

Early Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter Extrapolation

Arul Rhik Mazumder
Co-mentor: Samson Wang

August 2, 2025

Presentation Overview

This presentation covers:

- **Recap of Base Algorithm and Comparisons:**
 - Reminder of motivation for simulating time evolution, trotterization and Richardson Extrapolation for error reduction.
 - Analysis of fundamental primitives and cost estimates.
 - Comparison of time evolution methods.
- **Understanding Commutators:**
 - Definition and significance in Hamiltonian simulation.
 - Commutator scaling and bounds.
- **Partial Randomization:**
 - Physical and algorithmic motivations.
 - Hamiltonian decomposition and circuit representation.
 - **Our Algorithm:** Combining Richardson Extrapolation with Partial Randomization for enhanced performance.

Base Algorithm and Comparisons

Recap: Motivation & Background

- Simulating time evolution e^{-iHt} is fundamental to:
 - Quantum Phase Estimation (QPE)
 - Harrow-Hassidim-Lloyd (HHL) algorithm
 - General quantum simulation

Recap: Motivation & Background

- Simulating time evolution e^{-iHt} is fundamental to:
 - Quantum Phase Estimation (QPE)
 - Harrow-Hassidim-Lloyd (HHL) algorithm
 - General quantum simulation
- **Trotterization:** A practical approach to approximate e^{-iHt} using native gate sequences.

Recap: Motivation & Background

- Simulating time evolution e^{-iHt} is fundamental to:
 - Quantum Phase Estimation (QPE)
 - Harrow-Hassidim-Lloyd (HHL) algorithm
 - General quantum simulation
- **Trotterization:** A practical approach to approximate e^{-iHt} using native gate sequences.
- **The Challenge:** Circuit depth typically scales unfavorably with inverse error ($\mathcal{O}(1/\varepsilon)$).

Recap: Motivation & Background

- Simulating time evolution e^{-iHt} is fundamental to:
 - Quantum Phase Estimation (QPE)
 - Harrow-Hassidim-Lloyd (HHL) algorithm
 - General quantum simulation
- **Trotterization:** A practical approach to approximate e^{-iHt} using native gate sequences.
- **The Challenge:** Circuit depth typically scales unfavorably with inverse error ($\mathcal{O}(1/\varepsilon)$).
- **Our Solution:** Employ **Richardson Extrapolation** to enhance accuracy *without increasing quantum circuit depth*.

Recap: Motivation & Background

- Simulating time evolution e^{-iHt} is fundamental to:
 - Quantum Phase Estimation (QPE)
 - Harrow-Hassidim-Lloyd (HHL) algorithm
 - General quantum simulation
- **Trotterization:** A practical approach to approximate e^{-iHt} using native gate sequences.
- **The Challenge:** Circuit depth typically scales unfavorably with inverse error ($\mathcal{O}(1/\varepsilon)$).
- **Our Solution:** Employ **Richardson Extrapolation** to enhance accuracy *without increasing quantum circuit depth*.
- **Why Trotter is appealing:** It's NISQ-friendly due to low overhead, commutator scaling, and ease of compilation.

Recap: Richardson Extrapolation for Trotter Error

- **Trotter Error Expansion:** The computed observable $O(\delta)$ can be expressed as:

$$O(\delta) = O_{\text{exact}} + c_1 \delta^p + c_2 \delta^{2p} + \dots$$

Recap: Richardson Extrapolation for Trotter Error

- **Trotter Error Expansion:** The computed observable $O(\delta)$ can be expressed as:

$$O(\delta) = O_{\text{exact}} + c_1 \delta^p + c_2 \delta^{2p} + \dots$$

- **Extrapolation Method:**

- Run the Trotter simulation at multiple distinct step sizes δ_i .
- Combine results linearly to cancel leading-order errors:

$$O_{\text{extrapolated}} = \sum_i \alpha_i O(\delta_i), \quad \text{with} \quad \sum_i \alpha_i = 1$$

Recap: Richardson Extrapolation for Trotter Error

- **Trotter Error Expansion:** The computed observable $O(\delta)$ can be expressed as:

$$O(\delta) = O_{\text{exact}} + c_1\delta^p + c_2\delta^{2p} + \dots$$

- **Extrapolation Method:**

- Run the Trotter simulation at multiple distinct step sizes δ_i .
- Combine results linearly to cancel leading-order errors:

$$O_{\text{extrapolated}} = \sum_i \alpha_i O(\delta_i), \quad \text{with} \quad \sum_i \alpha_i = 1$$

- **Key Benefit:** This process is purely classical post-processing, requiring *no additional quantum circuit depth*.

Recap: Richardson Extrapolation for Trotter Error

- **Trotter Error Expansion:** The computed observable $O(\delta)$ can be expressed as:

$$O(\delta) = O_{\text{exact}} + c_1 \delta^p + c_2 \delta^{2p} + \dots$$

- **Extrapolation Method:**

- Run the Trotter simulation at multiple distinct step sizes δ_i .
- Combine results linearly to cancel leading-order errors:

$$O_{\text{extrapolated}} = \sum_i \alpha_i O(\delta_i), \quad \text{with } \sum_i \alpha_i = 1$$

- **Key Benefit:** This process is purely classical post-processing, requiring *no additional quantum circuit depth*.
- **Result:** Effectively increases the order of accuracy to $\mathcal{O}(\delta^{m+1})$, where m is the number of step sizes used for extrapolation.

Recap: Estimating General Matrix Functions

- **Goal:** Efficiently compute expressions of the form $\text{Tr}[f(A)\rho f(A)^\dagger O]$.

Recap: Estimating General Matrix Functions

- **Goal:** Efficiently compute expressions of the form $\text{Tr}[f(A)\rho f(A)^\dagger O]$.
- **Approximation Strategy:** Decompose the function $f(A)$ into a sum of exponentials:

$$f(A) \approx \sum_k c_k e^{iAt_k}$$

Recap: Estimating General Matrix Functions

- **Goal:** Efficiently compute expressions of the form $\text{Tr}[f(A)\rho f(A)^\dagger O]$.
- **Approximation Strategy:** Decompose the function $f(A)$ into a sum of exponentials:

$$f(A) \approx \sum_k c_k e^{iAt_k}$$

- **Problem Reduction:** This reduces the original problem to estimating two fundamental primitives:

- $\text{Tr}[Ze^{iAt}]$
- $\text{Tr}[e^{iAt} \rho e^{-iAt'} O]$

where Z is an observable with bounded Schatten 1-norm.

Recap: Estimating General Matrix Functions

- **Goal:** Efficiently compute expressions of the form $\text{Tr}[f(A)\rho f(A)^\dagger O]$.
- **Approximation Strategy:** Decompose the function $f(A)$ into a sum of exponentials:

$$f(A) \approx \sum_k c_k e^{iAt_k}$$

- **Problem Reduction:** This reduces the original problem to estimating two fundamental primitives:

- $\text{Tr}[Ze^{iAt}]$
- $\text{Tr}[e^{iAt} \rho e^{-iAt'} O]$

where Z is an observable with bounded Schatten 1-norm.

- **Key Findings:**
 - We rigorously proved that Richardson Extrapolation can be effectively applied to *each individual term* in these estimations.

Recap: Estimating General Matrix Functions

- **Goal:** Efficiently compute expressions of the form $\text{Tr}[f(A)\rho f(A)^\dagger O]$.
- **Approximation Strategy:** Decompose the function $f(A)$ into a sum of exponentials:

$$f(A) \approx \sum_k c_k e^{iAt_k}$$

- **Problem Reduction:** This reduces the original problem to estimating two fundamental primitives:

- $\text{Tr}[Ze^{iAt}]$
- $\text{Tr}[e^{iAt} \rho e^{-iAt'} O]$

where Z is an observable with bounded Schatten 1-norm.

- **Key Findings:**
 - We rigorously proved that Richardson Extrapolation can be effectively applied to *each individual term* in these estimations.
 - We randomly compile over our Fourier terms and extrapolation scheduling *in one go* to improve sample complexity.

Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental primitives to desired precision ε :

Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental primitives to desired precision ε :

- **Primitive 1:** $\text{Tr}[\rho e^{iAT}]$

Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental primitives to desired precision ε :

- **Primitive 1:** $\text{Tr}[\rho e^{iAT}]$

$$C_{\text{gate}} = \mathcal{O} \left(\Gamma(\gamma \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \left(\log \left(\frac{1}{\varepsilon} \right) \right)^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^2 \log \left(\frac{1}{\delta} \right) \right)$$

Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental primitives to desired precision ε :

- **Primitive 1:** $\text{Tr}[\rho e^{iAT}]$

$$C_{\text{gate}} = \mathcal{O} \left(\Gamma(\gamma \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \left(\log \left(\frac{1}{\varepsilon} \right) \right)^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^2 \log \left(\frac{1}{\delta} \right) \right)$$

- **Primitive 2:** $\text{Tr}[e^{iAT} \rho e^{-iAT'} O]$

Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental primitives to desired precision ε :

- **Primitive 1:** $\text{Tr}[\rho e^{iAT}]$

$$C_{\text{gate}} = \mathcal{O} \left(\Gamma(\gamma \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \left(\log \left(\frac{1}{\varepsilon} \right) \right)^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^2 \log \left(\frac{1}{\delta} \right) \right)$$

- **Primitive 2:** $\text{Tr}[e^{iAT} \rho e^{-iAT'} O]$

$$C_{\text{gate}} = \mathcal{O} \left(\Gamma(\gamma \lambda_{\text{comm}} T_{\max})^{1+\frac{1}{p}} \log \left(\frac{1}{\varepsilon} \right) \cdot \log \left(\frac{\log \log \left(\frac{1}{\varepsilon} \right)}{\varepsilon} \right) \right)$$

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \log \left(\frac{1}{\delta} \right) \right)$$

Recap: Comparison of Time Evolution Methods

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Recap: Comparison of Time Evolution Methods

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Notes:

- All methods estimate $\text{Tr}[\rho e^{iAt}]$ to ε error

Recap: Comparison of Time Evolution Methods

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Notes:

- All methods estimate $\text{Tr}[\rho e^{iAt}]$ to ε error
- Qubitization is not early fault-tolerant requiring $\lceil \log \Gamma \rceil + 3$ ancilla qubits.

Recap: Comparison of Time Evolution Methods

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Notes:

- All methods estimate $\text{Tr}[\rho e^{iAt}]$ to ε error
- Qubitization is not early fault-tolerant requiring $\lceil \log \Gamma \rceil + 3$ ancilla qubits.
- Exponential improvement on ε^{-1} scaling compared Trotter.

Recap: Comparison of Time Evolution Methods (Continued)

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)} T^{1/p}) \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Our algorithm:

- Sub-quadratic time complexity.

¹ Λ is the max operator norm in the Hamiltonian decomposition.

Recap: Comparison of Time Evolution Methods (Continued)

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Our algorithm:

- Sub-quadratic time complexity.
- Commutator scaling similar to Trotter using λ_{comm} .

¹ Λ is the max operator norm in the Hamiltonian decomposition.

Recap: Comparison of Time Evolution Methods (Continued)

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)} T^{1/p}) \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Our algorithm:

- Sub-quadratic time complexity.
- Commutator scaling similar to Trotter using λ_{comm} .
- In practice $\lambda_{\text{comm}} \ll \Lambda^1$

¹ Λ is the max operator norm in the Hamiltonian decomposition.

Recap: Comparison of Time Evolution Methods (Continued)

Method	Max Depth / Sample	Sample Overhead
Qubitization [1]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [2]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Our algorithm:

- Sub-quadratic time complexity.
- Commutator scaling similar to Trotter using λ_{comm} .
- In practice $\lambda_{\text{comm}} \ll \Lambda^1$
- These comparisons are for the simple primitives, used to compute matrix functions as a subroutine in HHL and QPE.

¹ Λ is the max operator norm in the Hamiltonian decomposition.

To Do:

To Do:

Develop complete algorithms: These comparisons are for simple primitives, used to compute matrix functions as a subroutine in HHL and QPE. We would like to develop and analyze the full algorithms.

To Do:

Develop complete algorithms: These comparisons are for simple primitives, used to compute matrix functions as a subroutine in HHL and QPE. We would like to develop and analyze the full algorithms.

1D extrapolation: Note that the sample complexity

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \log \left(\frac{1}{\delta} \right) \right)$$

Can we improve the $(\log \log(\frac{1}{\varepsilon}))^4$ to $(\log \log(\frac{1}{\varepsilon}))^2$ by extrapolating directly over $\text{Tr}[e^{iHT} \rho e^{-iHT'} O]$ instead of $\text{Tr}[Ze^{iHT}]$?

To Do:

Develop complete algorithms: These comparisons are for simple primitives, used to compute matrix functions as a subroutine in HHL and QPE. We would like to develop and analyze the full algorithms.

1D extrapolation: Note that the sample complexity

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \log \left(\frac{1}{\delta} \right) \right)$$

Can we improve the $(\log \log(\frac{1}{\varepsilon}))^4$ to $(\log \log(\frac{1}{\varepsilon}))^2$ by extrapolating directly over $\text{Tr}[e^{iHT} \rho e^{-iHT'} O]$ instead of $\text{Tr}[Ze^{iHT}]$?

Resource estimation: Can we do resource estimates for a particular chemical system?

Understanding Commutators

Understanding Commutators in Hamiltonian Simulation

What is a Commutator?:

Understanding Commutators in Hamiltonian Simulation

What is a Commutator?: For two operators A and B :

$$[A, B] := AB - BA$$

In a given decomposition $H = \sum_{i=1}^r H_i$, commutators quantify the extent to which the Hamiltonian terms H_i fail to commute.

Why care about commutators?

Understanding Commutators in Hamiltonian Simulation

What is a Commutator?: For two operators A and B :

$$[A, B] := AB - BA$$

In a given decomposition $H = \sum_{i=1}^r H_i$, commutators quantify the extent to which the Hamiltonian terms H_i fail to commute.

Why care about commutators?

- Nested commutators govern the error in product formulas.

Understanding Commutators in Hamiltonian Simulation

What is a Commutator?: For two operators A and B :

$$[A, B] := AB - BA$$

In a given decomposition $H = \sum_{i=1}^{\Gamma} H_i$, commutators quantify the extent to which the Hamiltonian terms H_i fail to commute.

Why care about commutators?

- Nested commutators govern the error in product formulas.
- **Nested Commutator Norms.** Define the j -th order commutator quantity as:

$$\alpha_{\text{comm}}^{(j)} := \sum_{\gamma_1, \dots, \gamma_j=1}^{\Gamma} \|[H_{\gamma_1}, [H_{\gamma_2}, \dots, [H_{\gamma_j}, H_{\gamma_{j+1}}] \dots]]\|$$

Commutator Scaling

Our Commutator Factor λ_{comm} :

$$\lambda_{\text{comm}} := \sup_{\substack{j \in \mathbb{Z}_{\geq \sigma_m} \\ 1 \leq \ell \leq K}} \left(\sum_{\substack{j_1, \dots, j_\ell \in \mathbb{Z}_{\geq p} \\ j_1 + \dots + j_\ell = j}} \prod_{\kappa=1}^{\ell} \frac{\alpha_{\text{comm}}^{(j_\kappa+1)}}{(j_\kappa + 1)^2} \right)^{1/(j+\ell)}$$

Commutator Scaling

Our Commutator Factor λ_{comm} :

$$\lambda_{\text{comm}} := \sup_{\substack{j \in \mathbb{Z}_{\geq \sigma_m} \\ 1 \leq \ell \leq K}} \left(\sum_{\substack{j_1, \dots, j_\ell \in \mathbb{Z}_{\geq p} \\ j_1 + \dots + j_\ell = j}} \prod_{\kappa=1}^{\ell} \frac{\alpha_{\text{comm}}^{(j_\kappa+1)}}{(j_\kappa + 1)^2} \right)^{1/(j+\ell)}$$

Lemma (General Commutator Growth Constant Bound [4])

For any Hamiltonian $H = \sum_{\gamma=1}^r H_\gamma$, we have $\lambda_{\text{comm}} \leq 4 \sum_{\gamma=1}^r \|H_\gamma\|$.

Examples of Commutator Scaling and Bounds

Example 1: Electronic Structure Hamiltonians (Plane Wave Basis)

$$\alpha_{\text{comm}}^{(j)} = \mathcal{O}(n^j) \Rightarrow \lambda_{\text{comm}} = \mathcal{O}(n)$$

Example 2: k -Local Hamiltonians²

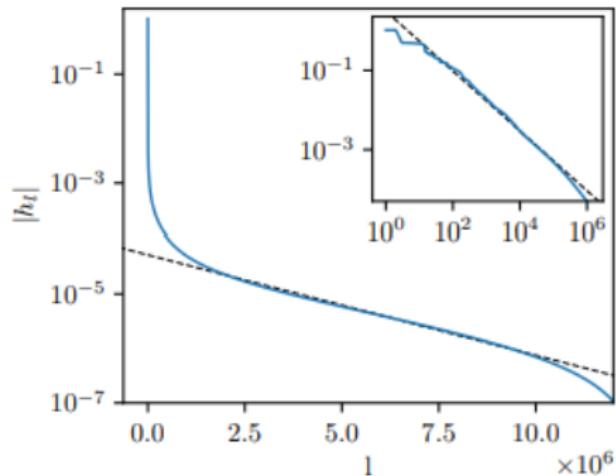
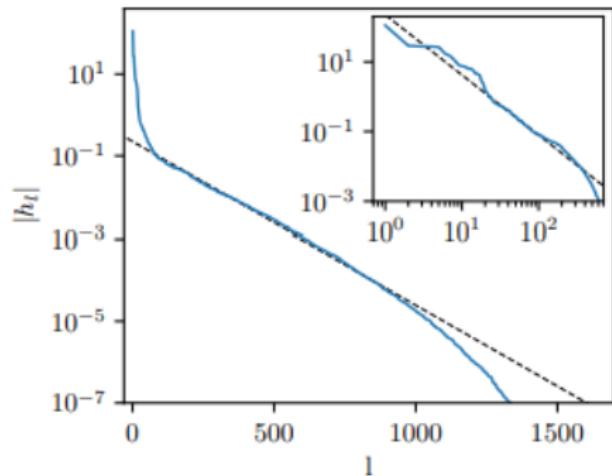
$$\alpha_{\text{comm}}^{(j)} = \mathcal{O} \left(\|\|H\|\|_1^{j-1} \|H\|_1 \right) \Rightarrow \lambda_{\text{comm}} = \mathcal{O} \left(\|\|H\|\|_1 \|H\|_1^{\frac{1}{p+1}} \right)$$

²Here, $\|\|H\|\|_1$ is a special induced matrix norm introduced in [2] and $\|H\|_1 = \sum_{i=1}^r \|H_i\|$

Partial Randomization [5]

Partial Randomization: Physical Motivation

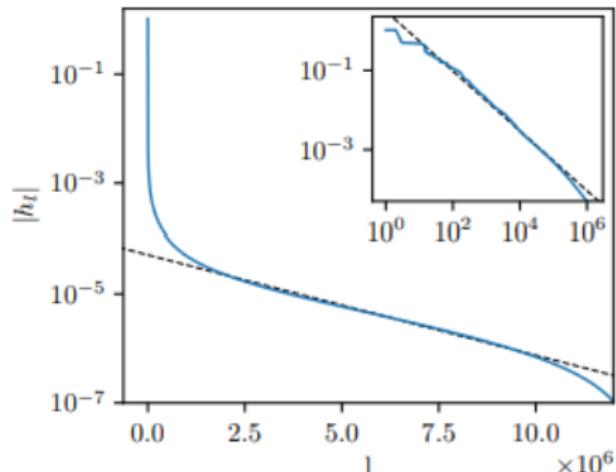
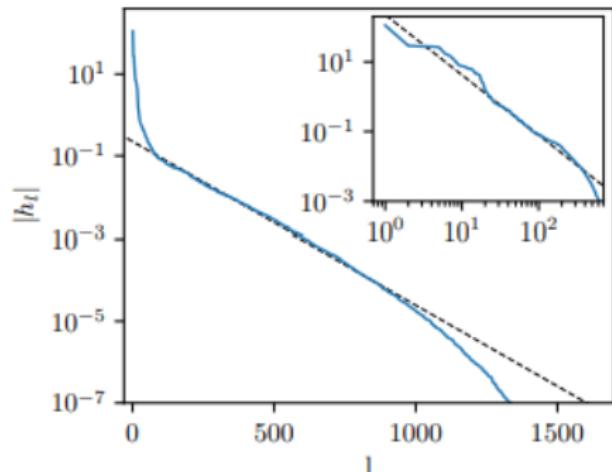
Many useful Hamiltonians in chemistry can be decomposed into a few high weight terms and large number of low weights.³



³Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [5]

Partial Randomization: Physical Motivation

Many useful Hamiltonians in chemistry can be decomposed into a few high weight terms and large number of low weights.³

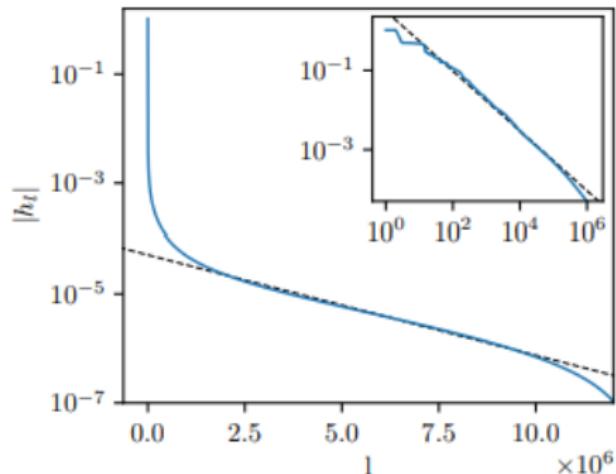
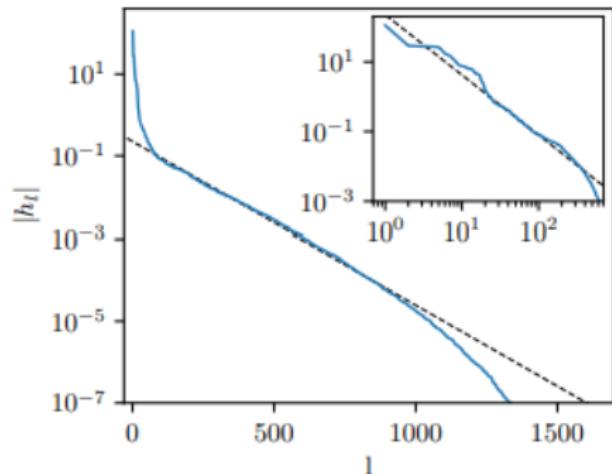


- The main plot shows exponential fit to the tail. ($|h_l| \approx Ae^{-b\ell}$)

³Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [5]

Partial Randomization: Physical Motivation

Many useful Hamiltonians in chemistry can be decomposed into a few high weight terms and large number of low weights.³



- The main plot shows exponential fit to the tail. ($|h_\ell| \approx Ae^{-b\ell}$)
- The insert shows power law fit for the large terms. ($|h_\ell| \approx C \cdot \ell^{-\alpha}$)

³Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [5]

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Randomized Product Formulas:

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Randomized Product Formulas:

- Removes dependence on L , cost $\sim \mathcal{O}(\lambda^2 t^2)$.

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Randomized Product Formulas:

- Removes dependence on L , cost $\sim \mathcal{O}(\lambda^2 t^2)$.
- **Problem:** t scales quadratically and λ is dominated by a few terms

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Randomized Product Formulas:

- Removes dependence on L , cost $\sim \mathcal{O}(\lambda^2 t^2)$.
- **Problem:** t scales quadratically and λ is dominated by a few terms

Key Insight:

- Many Hamiltonians have a long tail of small-weight terms.
- These terms inflate L but contribute little to λ .

Partial Randomization: Algorithmic Motivation

For a Hamiltonian $H = \sum_{l=1}^L H_l$, we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

- Cost scales linearly with L .
- Better scaling with ε^{-1}
- **Problem:** Circuits become impractically large as L grows. $L = \mathcal{O}(N^4)$ where N is the number of spatial orbitals.

Randomized Product Formulas:

- Removes dependence on L , cost $\sim \mathcal{O}(\lambda^2 t^2)$.
- **Problem:** t scales quadratically and λ is dominated by a few terms

Key Insight:

- Many Hamiltonians have a long tail of small-weight terms.
- These terms inflate L but contribute little to λ .
- **Solution:** Treat dominant terms deterministically and tail terms randomly. Combining ε^{-1} scaling with reduced L dependence.

Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

$$H = \underbrace{\sum_{l=1}^{L_D} H_l}_{=H_D} + \underbrace{\sum_{m=1}^M h_m P_m}_{=H_R}$$

where we assume that the operators P_m are Pauli.

Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

$$H = \underbrace{\sum_{l=1}^{L_D} H_l}_{=H_D} + \underbrace{\sum_{m=1}^M h_m P_m}_{=H_R}$$

where we assume that the operators P_m are Pauli.

- H_D contains the terms we treat deterministically with Trotter

Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

$$H = \underbrace{\sum_{l=1}^{L_D} H_l}_{=H_D} + \underbrace{\sum_{m=1}^M h_m P_m}_{=H_R}$$

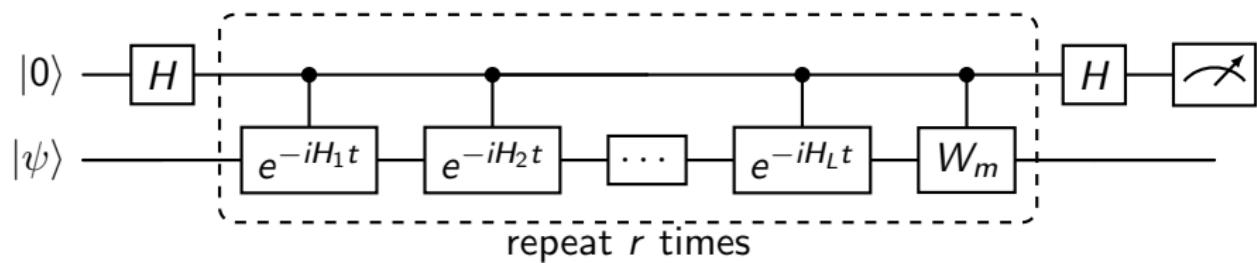
where we assume that the operators P_m are Pauli.

- H_D contains the terms we treat deterministically with Trotter
- H_R is computed with a random product formula

$$\lambda_R = \sum_{m=1}^M |h_m| \ll \lambda, \quad \text{and} \quad L_D \ll L,$$

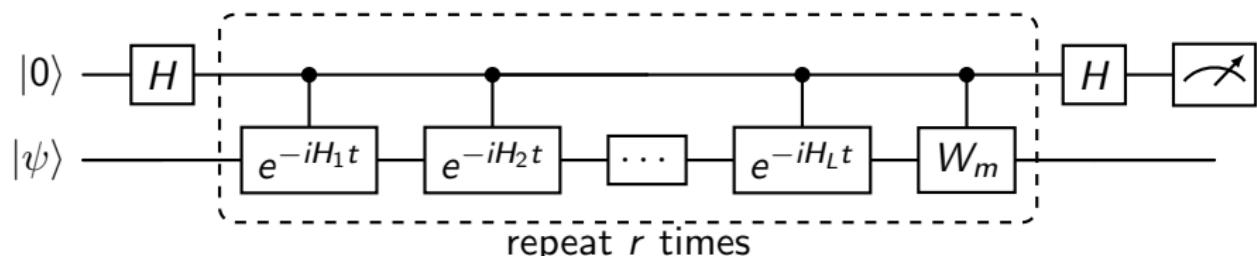
Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r time steps. This would estimate $\text{Re}[Ze^{iHT}]$



Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r time steps. This would estimate $\text{Re}[Ze^{iHT}]$

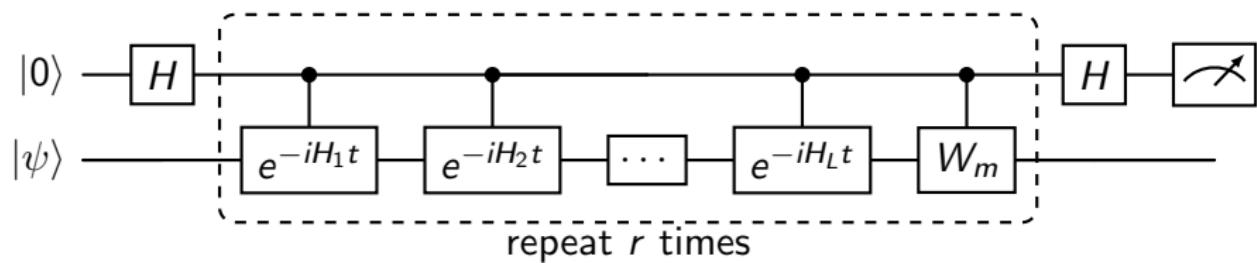


To implement each W_m we use the Randomized Taylor Expansion [3]:

$$\begin{aligned} e^{iH_R t} &= \left(e^{iH_R \tau} \right)^d = \beta(\tau)^d \left(\sum_m b_m U_m \right)^d \\ &= \beta(\tau)^d \sum_{m_1, \dots, m_d} b_{m_1} \cdots b_{m_d} U_{m_1} \cdots U_{m_d} \end{aligned}$$

Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r time steps. This would estimate $\text{Re}[Ze^{iHT}]$



To implement each W_m we use the Randomized Taylor Expansion [3]:

$$\begin{aligned} e^{iH_R t} &= \left(e^{iH_R \tau} \right)^d = \beta(\tau)^d \left(\sum_m b_m U_m \right)^d \\ &= \beta(\tau)^d \sum_{m_1, \dots, m_d} b_{m_1} \cdots b_{m_d} U_{m_1} \cdots U_{m_d} \end{aligned}$$

W_m samples $U_{m_1} \dots U_{m_d}$ over $\{b_{m_1} \dots b_{m_d}\}$. Note that $d = \mathcal{O}(\frac{\lambda_R^2 t^2}{r})$

Our Algorithm

Our Algorithm: Richardson + Partial Randomization

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :
 - Sample k_i according to $|b_k|$, scale time $t_{k_i} = s_{k_i} T$, number of steps $r_{k_i} = 1/s_{k_i}$, and step size $\delta_{k_i} = T/r_{k_i}$

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :
 - Sample k_i according to $|b_k|$, scale time $t_{k_i} = s_{k_i} T$, number of steps $r_{k_i} = 1/s_{k_i}$, and step size $\delta_{k_i} = T/r_{k_i}$
 - Generate a randomized evolution for H_R using d_{k_i} unitary block.

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :
 - Sample k_i according to $|b_k|$, scale time $t_{k_i} = s_{k_i} T$, number of steps $r_{k_i} = 1/s_{k_i}$, and step size $\delta_{k_i} = T/r_{k_i}$
 - Generate a randomized evolution for H_R using d_{k_i} unitary block.
 - Combine with deterministic Trotter step $\mathcal{P}(\delta_{k_i})$ from H_D .

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :
 - Sample k_i according to $|b_k|$, scale time $t_{k_i} = s_{k_i} T$, number of steps $r_{k_i} = 1/s_{k_i}$, and step size $\delta_{k_i} = T/r_{k_i}$
 - Generate a randomized evolution for H_R using d_{k_i} unitary block.
 - Combine with deterministic Trotter step $\mathcal{P}(\delta_{k_i})$ from H_D .
 - Estimate real and imaginary parts via Hadamard tests.

Our Algorithm: Richardson + Partial Randomization

Goal: Estimate $\text{Tr}[Z e^{iHT}]$ using a Trotter + randomization scheme with Richardson extrapolation.

Key Ingredients:

- Decompose Hamiltonian: $H = \sum_{l=1}^{L_D} H_l + \sum_{m=1}^M h_m P_m$
- Choose Richardson step sizes $\{s_k\}$ and coefficients $\{b_k\}$.

Main Loop:

- For $i = 1$ to N :
 - Sample k_i according to $|b_k|$, scale time $t_{k_i} = s_{k_i} T$, number of steps $r_{k_i} = 1/s_{k_i}$, and step size $\delta_{k_i} = T/r_{k_i}$
 - Generate a randomized evolution for H_R using d_{k_i} unitary block.
 - Combine with deterministic Trotter step $\mathcal{P}(\delta_{k_i})$ from H_D .
 - Estimate real and imaginary parts via Hadamard tests.

Output: Final estimate is the average over N samples:

$$\hat{Y}_N = \frac{1}{N} \sum_{i=1}^N Y^{(i)}$$

Richardson Improvement to Partial Randomization

To estimate $\text{Tr}[\rho e^{iHT}]$, our algorithm shows the exponential improvement in gate complexity with respect to error:

Richardson Improvement to Partial Randomization

To estimate $\text{Tr}[\rho e^{iHT}]$, our algorithm shows the exponential improvement in gate complexity with respect to error:

- Standard Partial Randomization

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\tilde{\alpha}_{\text{comm}}^{(p+1)})^{\frac{1}{p}} T^{1+\frac{1}{p}} \varepsilon^{-1/p} + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} (\varepsilon^{-2})$$

Richardson Improvement to Partial Randomization

To estimate $\text{Tr}[\rho e^{iHT}]$, our algorithm shows the exponential improvement in gate complexity with respect to error:

- Standard Partial Randomization

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\tilde{\alpha}_{\text{comm}}^{(p+1)})^{\frac{1}{p}} T^{1+\frac{1}{p}} \varepsilon^{-1/p} + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} (\varepsilon^{-2})$$

- Richardson-extrapolated Partial Randomization

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\Upsilon \tilde{\lambda}_{\text{comm}} T)^{1+\frac{1}{p}} \log^2(1/\varepsilon) + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} ((\log \log(1/\varepsilon))^2 \varepsilon^{-2})$$

Richardson Improvement to Partial Randomization

To estimate $\text{Tr}[\rho e^{iHT}]$, our algorithm shows the exponential improvement in gate complexity with respect to error:

- Standard Partial Randomization

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\tilde{\alpha}_{\text{comm}}^{(p+1)})^{\frac{1}{p}} T^{1+\frac{1}{p}} \varepsilon^{-1/p} + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} (\varepsilon^{-2})$$

- Richardson-extrapolated Partial Randomization

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\Upsilon \tilde{\lambda}_{\text{comm}} T)^{1+\frac{1}{p}} \log^2(1/\varepsilon) + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} ((\log \log(1/\varepsilon))^2 \varepsilon^{-2})$$

Note that $\tilde{\alpha}$ is commutator for partial randomized decomposition. We rigorously study this quantity to provide tighter bounds.

Bounding Commutator Factors

Lemma

Let $H = H_D + H_R$, where $H_D = \sum_{i \in D} H_i$ is the deterministic part and H_R is the randomized part. Let $\tilde{\alpha}_{\text{comm}}$ be the nested commutator norm computed over a grouped decomposition of $\{H_I\}_{I=1}^{L_D} \cup H_R$. Let $\tilde{\lambda}_{\text{comm}}$ be the resulting relevant commutator factor from applying its derivation using $\tilde{\alpha}_{\text{comm}}$. Then

$$\tilde{\lambda}_{\text{comm}} \leq \lambda_{\text{comm}}$$

Next Steps: Overview

① Main algorithm:

- **Develop complete algorithms**
- **1D extrapolation?**
- **Resource estimation?**

Next Steps: Overview

- ① Main algorithm:
 - **Develop complete algorithms**
 - **1D extrapolation?**
 - **Resource estimation?**
- ② Problem-specific questions
 - **Low Energy Subspace:** Can we tighten our error analysis for specific systems that only occupy the low-energy subspace of the Hilbert space?
 - **Fermionic Systems:** Can we tighten our error analysis for specific systems that preserve fermion number?
 - **Understanding λ_{comm} :** are there other examples where we can get strong bounds?

References I

- [1] G. H. Low and I. L. Chuang, "Hamiltonian simulation by qubitization," *Quantum*, vol. 3, p. 163, 2019, arXiv:1610.06546. DOI: 10.22331/q-2019-07-12-163.
- [2] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, "Theory of trotter error with commutator scaling," *Physical Review X*, vol. 11, no. 1, p. 011020, Feb. 2021. DOI: 10.1103/PhysRevX.11.011020. [Online]. Available: <http://dx.doi.org/10.1103/PhysRevX.11.011020>.
- [3] K. Wan, M. Berta, and E. T. Campbell, "Randomized quantum algorithm for statistical phase estimation," , vol. 129, p. 030503, 3 Jul. 2022, 2110.12071. DOI: 10.1103/PhysRevLett.129.030503. [Online]. Available: <https://link.aps.org/doi/10.1103/PhysRevLett.129.030503>.

References II

- [4] J. D. Watson and J. Watkins, *Exponentially reduced circuit depths using trotter error mitigation*, 2024. DOI: 10.48550/ARXIV.2408.14385. arXiv: 2408.14385. [Online]. Available: <https://arxiv.org/abs/2408.14385>.
- [5] J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow, “Phase estimation with partially randomized time evolution,” 2503.05647, 2025.