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Presentation Overview

This presentation covers:

Recap of Base Algorithm and Comparisons:
Reminder of motivation for simulating time evolution, trotterization
and Richardson Extrapolation for error reduction.
Analysis of fundamental primitives and cost estimates.
Comparison of time evolution methods.

Understanding Commutators:
Definition and significance in Hamiltonian simulation.
Commutator scaling and bounds.

Partial Randomization:
Physical and algorithmic motivations.
Hamiltonian decomposition and circuit representation.
Our Algorithm: Combining Richardson Extrapolation with Partial
Randomization for enhanced performance.
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Base Algorithm and Comparisons
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Recap: Motivation & Background

Simulating time evolution e−iHt is fundamental to:

Quantum Phase Estimation (QPE)
Harrow-Hassidim-Lloyd (HHL) algorithm
General quantum simulation

Trotterization: A practical approach to approximate e−iHt using
native gate sequences.

The Challenge: Circuit depth typically scales unfavorably with
inverse error (O(1/ε)).

Our Solution: Employ Richardson Extrapolation to enhance
accuracy without increasing quantum circuit depth.

Why Trotter is appealing: It’s NISQ-friendly due to low overhead,
commutator scaling, and ease of compilation.
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Recap: Richardson Extrapolation for Trotter Error

Trotter Error Expansion: The computed observable O(δ) can be
expressed as:

O(δ) = Oexact + c1δ
p + c2δ

2p + . . .

Extrapolation Method:
Run the Trotter simulation at multiple distinct step sizes δi .
Combine results linearly to cancel leading-order errors:

Oextrapolated =
∑
i

αiO(δi ), with
∑
i

αi = 1

Key Benefit: This process is purely classical post-processing,
requiring no additional quantum circuit depth.

Result: Effectively increases the order of accuracy to O(δm+1), where
m is the number of step sizes used for extrapolation.
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Recap: Estimating General Matrix Functions

Goal: Efficiently compute expressions of the form Tr[f (A)ρf (A)†O].

Approximation Strategy: Decompose the function f (A) into a sum
of exponentials:

f (A) ≈
∑
k

cke
iAtk

Problem Reduction: This reduces the original problem to estimating
two fundamental primitives:

Tr[Ze iAt ]
Tr[e iAtρe−iAt′O]

where Z is an observable with bounded Schatten 1-norm.

Key Findings:
We rigorously proved that Richardson Extrapolation can be effectively
applied to each individual term in these estimations.
We randomly compile over our Fourier terms and extrapolation
scheduling in one go to improve sample complexity.
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Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental
primitives to desired precision ε:

Primitive 1: Tr[ρe iAT ]

Cgate = O

(
Γ (ΥλcommT )1+

1
p

(
log

(
1

ε

))2
)

Csample = O

(
1

ε2

(
log log

(
1

ε

))2

log

(
1

δ

))

Primitive 2: Tr[e iATρe−iAT ′
O]

Cgate = O

(
Γ(ΥλcommTmax)

1+ 1
p log

(
1

ε

)
· log

(
log log

(
1
ε

)
ε

))

Csample = O

(
1

ε2

(
log log

(
1

ε

))4

log

(
1

δ

))
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Recap: Comparison of Time Evolution Methods

Method Max Depth / Sample Sample Overhead

Qubitization [1] O
(
Γ
[
ΛT + log(1/ε)

log log(1/ε)

])
O(1/ε2)

Product Formulae [2] O
(
Γ(α

(p+1)
comm)1/p)T 1+1/pε−1/p

)
O(1/ε2)

Random Compiler [3] O(Λ2T 2) O(1/ε2)

Our Algorithm O
(
Γ(λcommT )1+1/p(log(1/ε))2

)
O
(
(log log(1/ε))2/ε2

)

Notes:

All methods estimate Tr[ρe iAt ] to ε error

Qubitization is not early fault-tolerant requiring ⌈log Γ⌉+ 3 ancilla qubits.

Exponential improvement on ε−1 scaling compared Trotter.
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Recap: Comparison of Time Evolution Methods
(Continued)

Method Max Depth / Sample Sample Overhead

Qubitization [1] O
(
Γ
[
ΛT + log(1/ε)

log log(1/ε)

])
O(1/ε2)

Product Formulae [2] O
(
Γ(α

(p+1)
comm)1/p)T 1+1/pε−1/p

)
O(1/ε2)

Random Compiler [3] O(Λ2T 2) O(1/ε2)

Our Algorithm O
(
Γ(λcommT )1+1/p(log(1/ε))2

)
O
(
(log log(1/ε))2/ε2

)
Our algorithm:

Sub-quadratic time complexity.

Commutator scaling similar to Trotter using λcomm.

In practice λcomm << Λ 1

These comparisons are for the simple primitives, used to compute matrix
functions as a subroutine in HHL and QPE.

1Λ is the max operator norm in the Hamiltonian decomposition.
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To Do:

Develop complete algorithms: These comparisons are for simple
primitives, used to compute matrix functions as a subroutine in HHL and
QPE. We would like to develop and analyze the full algorithms.

1D extrapolation: Note that the sample complexity

Csample = O

(
1

ε2

(
log log

(
1

ε

))4

log

(
1

δ

))

Can we improve the
(
log log

(
1
ε

))4
to
(
log log

(
1
ε

))2
by extrapolating

directly over Tr[e iHTρe−iHT ′
O] instead of Tr[Ze iHT ]?

Resource estimation: Can we do resource estimates for a particular
chemical system?
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Understanding Commutators
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Understanding Commutators in Hamiltonian Simulation

What is a Commutator?:

For two operators A and B:

[A,B] := AB − BA

In a given decomposition H =
∑Γ

i=1Hi , commutators quantify the extent
to which the Hamiltonian terms Hi fail to commute.

Why care about commutators?

Nested commutators govern the error in product formulas.

Nested Commutator Norms. Define the j-th order commutator
quantity as:

α
(j)
comm :=

Γ∑
γ1,...,γj=1

∥∥[Hγ1 , [Hγ2 , . . . , [Hγj ,Hγj+1 ] . . . ]]
∥∥
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Commutator Scaling

Our Commutator Factor λcomm:

λcomm := sup
j∈Z≥σm
1≤ℓ≤K

 ∑
j1,...,jℓ∈Z≥p

j1+···+jℓ=j

ℓ∏
κ=1

α
(jκ+1)
comm

(jκ + 1)2


1/(j+ℓ)

Lemma (General Commutator Growth Constant Bound [4])

For any Hamiltonian H =
∑Γ

γ=1Hγ , we have λcomm ≤ 4
∑Γ

γ=1 ∥Hγ∥ .
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Examples of Commutator Scaling and Bounds

Example 1: Electronic Structure Hamiltonians (Plane Wave Basis)

α
(j)
comm = O(nj) ⇒ λcomm = O(n)

Example 2: k-Local Hamiltonians2

α
(j)
comm = O

(
|||H|||j−1

1 ∥H∥1
)

⇒ λcomm = O
(
|||H|||1∥H∥

1
p+1

1

)

2Here, |||H|||1 is a special induced matrix norm introduced in [2] and

∥H∥1 =
∑Γ

i=1 ∥Hi∥
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Partial Randomization [5]
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Partial Randomization: Physical Motivation

Many useful Hamiltonians in chemistry can be decomposed into a few high
weight terms and large number of low weights. 3

The main plot shows exponential fit to the tail. (|hℓ| ≈ Ae−bℓ)

The insert shows power law fit for the large terms. (|hℓ| ≈ C · ℓ−α)

3Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl,
and A. Harrow [5]
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H =
∑L

l=1Hl , we can simulate the time evolution with:

Trotter Product Formulas (Deterministic):

Cost scales linearly with L.

Better scaling with ε−1

Problem: Circuits become impractically large as L grows. L = O(N4)
where N is the number of spatial orbitals.

Randomized Product Formulas:

Removes dependence on L, cost ∼ O(λ2t2).

Problem: t scales quadratically and λ is dominated by a few terms

Key Insight:

Many Hamiltonians have a long tail of small-weight terms.

These terms inflate L but contribute little to λ.

Solution: Treat dominant terms deterministically and tail terms
randomly. Combining ε−1 scaling with reduced L dependence.
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Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

H =

LD∑
l=1

Hl︸ ︷︷ ︸
=HD

+
M∑

m=1

hmPm︸ ︷︷ ︸
=HR

where we assume that the operators Pm are Pauli.

HD contains the terms we treat deterministically with Trotter

HR is computed with a random product formula

λR =
M∑

m=1

|hm| ≪ λ, and LD ≪ L,
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Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r
time steps. This would estimate Re[Ze iHT ]

|0⟩ H H

|ψ⟩ e−iH1t e−iH2t · · · e−iHLt Wm

repeat r times

To implement each Wm we use the Randomized Taylor Expansion [3]:

e iHR t =
(
e iHRτ

)d
= β(τ)d

(∑
m

bmUm

)d

= β(τ)d
∑

m1,...,md

bm1 · · · bmd
Um1 · · ·Umd

Wm samples Um1 . . .Umd
over {bm1 . . . bmd

}. Note that d = O(
λ2
R t

2

r )
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Our Algorithm

Arul Rhik Mazumder Co-mentor: Samson WangEarly Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter ExtrapolationAugust 2, 2025 20 / 26



Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze iHT ] using a Trotter + randomization scheme with
Richardson extrapolation.
Key Ingredients:

Decompose Hamiltonian: H =
∑LD

l=1Hl +
∑M

m=1 hmPm

Choose Richardson step sizes {sk} and coefficients {bk}.
Main Loop:

For i = 1 to N:
Sample ki according to |bk |, scale time tki = skiT , number of steps
rki = 1/ski , and step size δki = T/rki
Generate a randomized evolution for HR using dki unitary block.
Combine with deterministic Trotter step P(δki ) from HD .
Estimate real and imaginary parts via Hadamard tests.

Output: Final estimate is the average over N samples:

ŶN =
1

N

N∑
i=1

Y (i)
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Choose Richardson step sizes {sk} and coefficients {bk}.
Main Loop:

For i = 1 to N:
Sample ki according to |bk |, scale time tki = skiT , number of steps
rki = 1/ski , and step size δki = T/rki
Generate a randomized evolution for HR using dki unitary block.

Combine with deterministic Trotter step P(δki ) from HD .
Estimate real and imaginary parts via Hadamard tests.

Output: Final estimate is the average over N samples:
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ŶN =
1

N

N∑
i=1

Y (i)

Arul Rhik Mazumder Co-mentor: Samson WangEarly Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter ExtrapolationAugust 2, 2025 21 / 26



Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze iHT ] using a Trotter + randomization scheme with
Richardson extrapolation.
Key Ingredients:

Decompose Hamiltonian: H =
∑LD

l=1Hl +
∑M

m=1 hmPm

Choose Richardson step sizes {sk} and coefficients {bk}.
Main Loop:

For i = 1 to N:
Sample ki according to |bk |, scale time tki = skiT , number of steps
rki = 1/ski , and step size δki = T/rki
Generate a randomized evolution for HR using dki unitary block.
Combine with deterministic Trotter step P(δki ) from HD .
Estimate real and imaginary parts via Hadamard tests.

Output: Final estimate is the average over N samples:
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Richardson Improvement to Partial Randomization

To estimate Tr[ρe iHT ], our algorithm shows the exponential improvement
in gate complexity with respect to error:

Standard Partial Randomization

Cgate = O
(
LD(α̃

(p+1)
comm)

1
pT 1+ 1

p ε−1/p + λ2RT
2
)

Csample = O
(
ε−2
)

Richardson-extrapolated Partial Randomization

Cgate = O
(
LD(Υλ̃commT )1+

1
p log2 (1/ε) + λ2RT

2
)

Csample = O
(
(log log(1/ε))2ε−2)

)
Note that α̃ is commutator for partial randomized decomposition. We
rigorously study this quantity to provide tighter bounds.
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Bounding Commutator Factors

Lemma

Let H = HD + HR , where HD =
∑

i∈D Hi is the deterministic part and HR

is the randomized part. Let α̃comm be the nested commutator norm
computed over a grouped decomposition of {Hl}LDl=1 ∪ HR . Let λ̃comm be
the resulting relevant commutator factor from applying its derivation using
α̃comm. Then

λ̃comm ≤ λcomm
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Next Steps: Overview

1 Main algorithm:

Develop complete algorithms
1D extrapolation?
Resource estimation?

2 Problem-specific questions

Low Energy Subspace: Can we tighten our error analysis for specific
systems that only occupy the low-energy subspace of the Hilbert space?
Fermionic Systems: Can we tighten our error analysis for specific
systems that preserve fermion number?
Understanding λcomm: are there other examples where we can get
strong bounds?
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