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Presentation Overview

This presentation covers:
@ Recap of Base Algorithm and Comparisons:
e Reminder of motivation for simulating time evolution, trotterization
and Richardson Extrapolation for error reduction.
e Analysis of fundamental primitives and cost estimates.
e Comparison of time evolution methods.

@ Understanding Commutators:
o Definition and significance in Hamiltonian simulation.
o Commutator scaling and bounds.

o Partial Randomization:
e Physical and algorithmic motivations.
e Hamiltonian decomposition and circuit representation.
e Our Algorithm: Combining Richardson Extrapolation with Partial
Randomization for enhanced performance.
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Base Algorithm and Comparisons
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Recap: Motivation & Background

@ Simulating time evolution e~ is fundamental to:

o Quantum Phase Estimation (QPE)
o Harrow-Hassidim-Lloyd (HHL) algorithm
e General quantum simulation
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e General quantum simulation
o Trotterization: A practical approach to approximate e/t
native gate sequences.
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Recap: Motivation & Background

@ Simulating time evolution e~ is fundamental to:

o Quantum Phase Estimation (QPE)
o Harrow-Hassidim-Lloyd (HHL) algorithm
e General quantum simulation

o Trotterization: A practical approach to approximate e~ using
native gate sequences.

@ The Challenge: Circuit depth typically scales unfavorably with
inverse error (O(1/¢)).
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@ Simulating time evolution e~ is fundamental to:

o Quantum Phase Estimation (QPE)

o Harrow-Hassidim-Lloyd (HHL) algorithm

e General quantum simulation
o Trotterization: A practical approach to approximate e/t
native gate sequences.

using

@ The Challenge: Circuit depth typically scales unfavorably with
inverse error (O(1/¢)).

@ Our Solution: Employ Richardson Extrapolation to enhance
accuracy without increasing quantum circuit depth.
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Recap: Motivation & Background

—iHt

Simulating time evolution e is fundamental to:

o Quantum Phase Estimation (QPE)

o Harrow-Hassidim-Lloyd (HHL) algorithm

o General quantum simulation
o Trotterization: A practical approach to approximate e/t
native gate sequences.

using

@ The Challenge: Circuit depth typically scales unfavorably with
inverse error (O(1/¢)).

@ Our Solution: Employ Richardson Extrapolation to enhance
accuracy without increasing quantum circuit depth.

o Why Trotter is appealing: It's NISQ-friendly due to low overhead,
commutator scaling, and ease of compilation.
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Recap: Richardson Extrapolation for Trotter Error

o Trotter Error Expansion: The computed observable O(d) can be

expressed as: ,
0(5) = Oexact + C16° + ©0°P + ...
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Recap: Richardson Extrapolation for Trotter Error

o Trotter Error Expansion: The computed observable O(d) can be

expressed as: ,
0(5) = Oexact + C16° + ©0°P + ...

o Extrapolation Method:

e Run the Trotter simulation at multiple distinct step sizes §;.
e Combine results linearly to cancel leading-order errors:

Oextrapolated = Zaio((si)7 with Zai =1
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Recap: Richardson Extrapolation for Trotter Error

o Trotter Error Expansion: The computed observable O(d) can be

expressed as: ,
0(5) = Oexact + C16° + ©0°P + ...

o Extrapolation Method:

e Run the Trotter simulation at multiple distinct step sizes §;.
e Combine results linearly to cancel leading-order errors:

Oextrapolated = Zaio((si)7 with Zai =1

o Key Benefit: This process is purely classical post-processing,
requiring no additional quantum circuit depth.
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Recap: Richardson Extrapolation for Trotter Error

Trotter Error Expansion: The computed observable O(d) can be

expressed as: ,
0(5) = Oexact + C16° + ©0°P + ...

Extrapolation Method:

e Run the Trotter simulation at multiple distinct step sizes §;.
e Combine results linearly to cancel leading-order errors:

Oextrapolated = Zaio((si)7 with Zai =1

Key Benefit: This process is purely classical post-processing,
requiring no additional quantum circuit depth.

Result: Effectively increases the order of accuracy to O(6™+1), where
m is the number of step sizes used for extrapolation.
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Recap: Estimating General Matrix Functions

o Goal: Efficiently compute expressions of the form Tr[f(A)pf(A)TO].
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e Approximation Strategy: Decompose the function f(A) into a sum
of exponentials:

f(A) ~ Z cre Atk
k
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Recap: Estimating General Matrix Functions

o Goal: Efficiently compute expressions of the form Tr[f(A)pf(A)TO].

e Approximation Strategy: Decompose the function f(A) into a sum
of exponentials:

f(A) ~ Z cre Atk
k

@ Problem Reduction: This reduces the original problem to estimating
two fundamental primitives:
° Tr[ZeiAt]
o Tr[epe=At O]
where Z is an observable with bounded Schatten 1-norm.

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Recap: Estimating General Matrix Functions

o Goal: Efficiently compute expressions of the form Tr[f(A)pf(A)TO].

e Approximation Strategy: Decompose the function f(A) into a sum
of exponentials:

f(A) ~ Z cre Atk
k

@ Problem Reduction: This reduces the original problem to estimating
two fundamental primitives:

° Tr[ZeiAt]
o Tr[epe=At O]
where Z is an observable with bounded Schatten 1-norm.
o Key Findings:
e We rigorously proved that Richardson Extrapolation can be effectively
applied to each individual term in these estimations.
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Recap: Estimating General Matrix Functions

o Goal: Efficiently compute expressions of the form Tr[f(A)pf(A)TO].

e Approximation Strategy: Decompose the function f(A) into a sum
of exponentials:

f(A) ~ Z cre Atk
k

@ Problem Reduction: This reduces the original problem to estimating
two fundamental primitives:
° Tr[ZeiAt]
o Tr[epe=At O]
where Z is an observable with bounded Schatten 1-norm.
o Key Findings:
e We rigorously proved that Richardson Extrapolation can be effectively
applied to each individual term in these estimations.
o We randomly compile over our Fourier terms and extrapolation
scheduling in one go to improve sample complexity.
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Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental
primitives to desired precision ¢:
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Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental
primitives to desired precision ¢:

o Primitive 1: Tr[peAT]
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o Primitive 2: Tr[e"AT pe="AT' O]
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Recap: Analyzed Primitives & Cost Estimates

We rigorously analyzed the complexity of estimating our fundamental
primitives to desired precision ¢:

o Primitive 1: Tr[peAT]
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o Primitive 2: Tr[e"AT pe="AT' O]
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Recap: Comparison of Time Evolution Methods

Method Max Depth / Sample Sample Overhead
oAt log(1/¢) 2

Qubitization [1] o (F [/\T + W]) O(1/e?)

Product Formulae [2] | O (F(aﬁ%ﬂ)””)T1+1/P5_1/”) 0(1/€?)

Random Compiler [3] O(N2T?) O(1/€2)

Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)
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Recap: Comparison of Time Evolution Methods

Method Max Depth / Sample Sample Overhead
. . log(1/¢) 2
Qubitization [1] o (F [/\T + W]) O(1/e?)
Product Formulae [2] | O (F(aﬁ%ﬂ)””)T1+1/P5_1/”) 0(1/€?)
Random Compiler [3] O(N2T?) O(1/€2)
Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)
Notes:

@ All methods estimate Tr[ped*] to ¢ error
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Recap: Comparison of Time Evolution Methods

Method Max Depth / Sample Sample Overhead
. . log(1/¢) 2
Qubitization [1] o (F [/\T + W]) O(1/e?)
Product Formulae [2] | O (F(aﬁ%ﬂ)””)T1+1/P5_1/”) 0(1/€?)
Random Compiler [3] O(N2T?) O(1/€2)
Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)
Notes:

@ All methods estimate Tr[ped*] to ¢ error

@ Qubitization is not early fault-tolerant requiring [log '] + 3 ancilla qubits.
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Recap: Comparison of Time Evolution Methods

Method Max Depth / Sample Sample Overhead
. . log(1/¢) 2
Qubitization [1] o (F [/\T + W]) O(1/e?)
Product Formulae [2] | O (F(aﬁ%ﬂ)””)T1+1/P5_1/”) 0(1/€?)
Random Compiler [3] O(N2T?) O(1/€2)
Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)
Notes:

@ All methods estimate Tr[ped*] to ¢ error
@ Qubitization is not early fault-tolerant requiring [log '] + 3 ancilla qubits.

@ Exponential improvement on 7! scaling compared Trotter.
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Recap: Comparison of Time Evolution Methods

(Continued)

Method Max Depth / Sample Sample Overhead
Qubitization [1] 0 (r [/\T + %]) 0(1/2)
Product Formulae [2] | O (r(aﬁﬁﬂ)l/ﬂ’) T1+1/”5_1/”) 0(1/¢?)
Random Compiler [3] O(N2T?) O(1/€%)

Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)

Our algorithm:

@ Sub-quadratic time complexity.

A is the max operator norm in the Hamiltonian decomposition.
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Recap: Comparison of Time Evolution Methods

(Continued)

Method Max Depth / Sample Sample Overhead
— log(1/2) 2

QUb|t|Zat|0n [1] O (r |:/\T + W]) 0(1/5 )

Product Formulae [2] | O (r(aﬁﬁﬂ)l/ﬂ’) T1+1/”5_1/”) 0(1/¢?)

Random Compiler [3] O(N2T?) O(1/€%)

Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)

Our algorithm:

@ Sub-quadratic time complexity.

@ Commutator scaling similar to Trotter using Acomm-

A is the max operator norm in the Hamiltonian decomposition.
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Recap: Comparison of Time Evolution Methods

(Continued)

Method Max Depth / Sample Sample Overhead
— log(1/2) 2

QUb|t|Zat|0n [1] O (r |:/\T + W]) 0(1/5 )

Product Formulae [2] | O (r(aﬁﬁﬂ)l/ﬂ’) T1+1/”5_1/”) 0(1/¢?)

Random Compiler [3] O(N2T?) O(1/€%)

Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)

Our algorithm:
@ Sub-quadratic time complexity.
@ Commutator scaling similar to Trotter using Acomm-

@ In practice Acomm << A1

A is the max operator norm in the Hamiltonian decomposition.
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Recap: Comparison of Time Evolution Methods

(Continued)

Method Max Depth / Sample Sample Overhead
— log(1/2) 2

QUb|t|Zat|0n [1] O (r |:/\T + W]) 0(1/5 )

Product Formulae [2] | O (r(aﬁﬁﬂ)l/ﬂ’) T1+1/”5_1/”) 0(1/¢?)

Random Compiler [3] O(N2T?) O(1/€%)

Our Algorithm O (T(Acomm T)H1/P(log(1/2))?) | O ((loglog(1/2))?/<?)

Our algorithm:

Sub-quadratic time complexity.

Commutator scaling similar to Trotter using Acomm-

In practice Aeomm << A !

@ These comparisons are for the simple primitives, used to compute matrix
functions as a subroutine in HHL and QPE.

A is the max operator norm in the Hamiltonian decomposition.

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Arul Rhik Mazumder Co- Samson WEarly Fault-Tolerant Quantum Algorithms for



Develop complete algorithms: These comparisons are for simple
primitives, used to compute matrix functions as a subroutine in HHL and
QPE. We would like to develop and analyze the full algorithms.
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Develop complete algorithms: These comparisons are for simple
primitives, used to compute matrix functions as a subroutine in HHL and
QPE. We would like to develop and analyze the full algorithms.

1D extrapolation: Note that the sample complexity

o= (3 (rin(2)) 5 (3)

Can we improve the (Ioglog(%))4 to (log Iog(%))2 by extrapolating
directly over Tr[e"T pe=™MT" O] instead of Tr[Ze™T]?
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Develop complete algorithms: These comparisons are for simple
primitives, used to compute matrix functions as a subroutine in HHL and
QPE. We would like to develop and analyze the full algorithms.

1D extrapolation: Note that the sample complexity

o= (3 (rin(2)) 5 (3)

Can we improve the (Ioglog(%))4 to (log Iog(é))2 by extrapolating
directly over Tr[e"T pe=™MT" O] instead of Tr[Ze™T]?

Resource estimation: Can we do resource estimates for a particular
chemical system?
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Understanding Commutators
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Understanding Commutators in Hamiltonian Simulation

What is a Commutator?:
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Understanding Commutators in Hamiltonian Simulation

What is a Commutator?: For two operators A and B:
[A,B] .= AB — BA

In a given decomposition H = Z,-rzl H;, commutators quantify the extent
to which the Hamiltonian terms H; fail to commute.

Why care about commutators?
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What is a Commutator?: For two operators A and B:
[A,B] .= AB — BA

In a given decomposition H = Z,-rzl H;, commutators quantify the extent
to which the Hamiltonian terms H; fail to commute.

Why care about commutators?

@ Nested commutators govern the error in product formulas.
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Understanding Commutators in Hamiltonian Simulation

What is a Commutator?: For two operators A and B:
[A,B] .= AB — BA

In a given decomposition H = Z,-rzl H;, commutators quantify the extent
to which the Hamiltonian terms H; fail to commute.
Why care about commutators?

@ Nested commutators govern the error in product formulas.

@ Nested Commutator Norms. Define the j-th order commutator

quantity as:
) r
ag))mm = Z H[H'yla[H'Yza-'-a[H’Yij’YjJrl]'"]]H
Y1y V=1
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Commutator Scaling

Our Commutator Factor Acomm:

1/(+6)
y4 w1
. Olglomm)
Acomm = Ssup § H J +1
j€Z>o'm H
1</<K J1se- 7Je€Z>pK 1

Jittie=j
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Commutator Scaling

Our Commutator Factor Acomm:

1/(+£)
¢ Ustl)

Acomm = _sup Z H Jac:r_nr;
K

» Jl: 7./€€Z>p” 1
- St te=J

Lemma (General Commutator Growth Constant Bound [4])

For any Hamiltonian H = 22:1 H,, we have Acomm < 42521 |HA Il -

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Examples of Commutator Scaling and Bounds

Example 1: Electronic Structure Hamiltonians (Plane Wave Basis)
Oéga)mm = O(n]) = Acomm = O(n)

Example 2: k-Local Hamiltonians?

) -1 i
acomm = O <H|HH|J1 HH”I) = Acomm = O (’”HH‘IHHHf+ >

’Here, ||H||, is a special induced matrix norm introduced in [2] and
r
[Hlls =2 iy [ Hill
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Partial Randomization [5]
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Partial Randomization: Physical Motivation
Many useful Hamiltonians in chemistry can be decomposed into a few high
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z,LZI H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z,LZI H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.

Randomized Product Formulas:
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.

Randomized Product Formulas:

@ Removes dependence on L, cost ~ O(\2t?).
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.

Randomized Product Formulas:
@ Removes dependence on L, cost ~ O(\2t?).

@ Problem: t scales quadratically and A is dominated by a few terms
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.

@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.

Randomized Product Formulas:

@ Removes dependence on L, cost ~ O(\2t?).

@ Problem: t scales quadratically and A is dominated by a few terms
Key Insight:

@ Many Hamiltonians have a long tail of small-weight terms.

@ These terms inflate L but contribute little to A.
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Partial Randomization: Algorithmic Motivation

For a Hamiltonian H = Z/L:1 H;, we can simulate the time evolution with:
Trotter Product Formulas (Deterministic):

@ Cost scales linearly with L.
@ Better scaling with 71

@ Problem: Circuits become impractically large as L grows. L = O(N*)
where N is the number of spatial orbitals.

Randomized Product Formulas:

@ Removes dependence on L, cost ~ O(\2t?).

@ Problem: t scales quadratically and A is dominated by a few terms
Key Insight:

@ Many Hamiltonians have a long tail of small-weight terms.

@ These terms inflate L but contribute little to A.

@ Solution: Treat dominant terms deterministically and tail terms
randomly. Combining €~ ! scaling with reduced L dependence.
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Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

Lp M
H=> Hi+>_ hnPn
I=1 m=1

=Hp =Hgr

where we assume that the operators P, are Pauli.
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Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

Lp M
H=> Hi+>_ hnPn
I=1 m=1

=Hp =Hgr

where we assume that the operators P, are Pauli.

@ Hp contains the terms we treat deterministically with Trotter
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Partial Randomization: Decomposition

Partial randomization is based on the decomposition:

Lp M
M= H 3 ol
I=1 m=1
—.— N——
=HD :HR
where we assume that the operators P, are Pauli.
@ Hp contains the terms we treat deterministically with Trotter

@ Hpg is computed with a random product formula

M
Ar = |hm| <A, and Lp <L,

m=1
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Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r
time steps. This would estimate Re[Ze"T]

____________________________________

o) —{H}- 7 7 7

) ——

____________________________________

repeat r times
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Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r
time steps. This would estimate Re[Ze"T]

____________________________________

AINCL e !
) —He | /

____________________________________

repeat r times

To implement each W, we use the Randomized Taylor Expansion [3]:

olHrt — ( IHRT) (T)d (Z mem>d

Z by =+ by Uy -+ Unm,

my,...,Mq
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Partial Randomization: Circuit Representation

Consider the following 1st order partial random Trotter formula over r
time steps. This would estimate Re[Ze"T]

____________________________________

AINCL e !
) —He | /

____________________________________

repeat r times

To implement each W, we use the Randomized Taylor Expansion [3]:

olHrt — ( IHRT) (T)d (Z mem>d

Z by =+ by Uy -+ Unm,

my,...,Mq

t2)

2
W, samples Up, ... Un, over {bpm, ...bm,}. Note that d = (’)(’\R
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Our Algorithm

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for



Our Algorithm: Richardson + Partial Randomization
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:
@ Decompose Hamiltonian: H = Z,Lﬁ

L Hi+ 1 P
@ Choose Richardson step sizes {si} and coefficients {by}.
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:
o Decompose Hamiltonian: H ="k Hy+ M h, P,

@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:

@ Fori=1to N:
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:
o Decompose Hamiltonian: H ="k Hy+ M h, P,

@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:

@ Fori=1to N:

e Sample k; according to |by/|, scale time ty, = si, T, number of steps
r, = 1/sk,, and step size 8, = T/ry,
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:

o Decompose Hamiltonian: H = 312 Hi+ XM hoPrm
@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:

@ Fori=1to N:
e Sample k; according to |by/|, scale time ty, = si, T, number of steps
r, = 1/sk,, and step size 8, = T/ry,

o Generate a randomized evolution for Hg using d, unitary block.
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:
o Decompose Hamiltonian: H = 312 Hi+ XM hoPrm
@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:
@ Fori=1to N:
e Sample k; according to |by/|, scale time ty, = si, T, number of steps
r, = 1/sk,, and step size 8, = T/ry,
o Generate a randomized evolution for Hg using d, unitary block.
o Combine with deterministic Trotter step P(dx,) from Hp.
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:

o Decompose Hamiltonian: H = 312 Hi+ XM hoPrm

@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:

@ Fori=1to N:

e Sample k; according to |by/|, scale time ty, = si, T, number of steps
r, = 1/sk,, and step size 8, = T/ry,

Generate a randomized evolution for Hg using dj; unitary block.

Combine with deterministic Trotter step P(dx,) from Hp.
Estimate real and imaginary parts via Hadamard tests.
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Our Algorithm: Richardson + Partial Randomization

Goal: Estimate Tr[Ze™T] using a Trotter + randomization scheme with
Richardson extrapolation.

Key Ingredients:

o Decompose Hamiltonian: H = 312 Hi+ XM hoPrm

@ Choose Richardson step sizes {si} and coefficients {by}.
Main Loop:

@ Fori=1to N:

e Sample k; according to |by/|, scale time ty, = si, T, number of steps
r, = 1/sk,, and step size 8, = T/ry,

Generate a randomized evolution for Hg using dj; unitary block.
Combine with deterministic Trotter step P(dx,) from Hp.
Estimate real and imaginary parts via Hadamard tests.

Output: Final estimate is the average over N samples:

1N
A_i§ ()
YN_N,ly
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Richardson Improvement to Partial Randomization

To estimate Tr[pe], our algorithm shows the exponential improvement
in gate complexity with respect to error:
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Richardson Improvement to Partial Randomization

To estimate Tr[pe], our algorithm shows the exponential improvement
in gate complexity with respect to error:

@ Standard Partial Randomization
Caae = O (Lp(@0am) T o717 4+ N2 T?)
Csample =0 (572)
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Richardson Improvement to Partial Randomization

To estimate Tr[pe], our algorithm shows the exponential improvement
in gate complexity with respect to error:

@ Standard Partial Randomization
Cgote = O (Lo(@BhR)» TH o710 4 N2 T?)
Csample =0 (572)
@ Richardson-extrapolated Partial Randomization
Caate = O (Lo(TReomm TV log? (1/2) + X; T2)
Csample = O ((log Iog(l/s))25_2))
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Richardson Improvement to Partial Randomization

To estimate Tr[pe], our algorithm shows the exponential improvement
in gate complexity with respect to error:

@ Standard Partial Randomization
Cgote = O (Lo(@BhR)» TH o710 4 N2 T?)
Csample =0 (572)
@ Richardson-extrapolated Partial Randomization
Caate = O (Lo(TReomm TV log? (1/2) + X; T2)
Csample = O ((log Iog(l/s))2e_2))

Note that & is commutator for partial randomized decomposition. We
rigorously study this quantity to provide tighter bounds.
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Bounding Commutator Factors

Let H= Hp + Hr, where Hp = ZieD H; is the deterministic part and Hg
is the randomized part. Let Gcomm be the nested commutator norm
computed over a grouped decomposition of{H/},L:D1 U Hg. Let Xcomm be
the resulting relevant commutator factor from applying its derivation using
Qcomm- Then

)\comm S >\comm
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Next Steps: Overview

@ Main algorithm:
o Develop complete algorithms
e 1D extrapolation?
o Resource estimation?
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Next Steps: Overview

@ Main algorithm:
o Develop complete algorithms
e 1D extrapolation?
o Resource estimation?
@ Problem-specific questions
o Low Energy Subspace: Can we tighten our error analysis for specific
systems that only occupy the low-energy subspace of the Hilbert space?
e Fermionic Systems: Can we tighten our error analysis for specific
systems that preserve fermion number?
e Understanding \.,mm: are there other examples where we can get
strong bounds?
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