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Motivation & Context

For a quantum system with Hamiltonian H, the time evolution of a state
|1(t)) is governed by:

[(t)) = U(t)](0)), where U(t) = e Ht/h
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e Time evolution e~ is a core building block of quantum algorithms

(QPE, HHL, quantum simulation).
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Motivation & Context

For a quantum system with Hamiltonian H, the time evolution of a state
|1(t)) is governed by:

[(t)) = U(t)](0)), where U(t) = e iHt/h
e Time evolution e~ is a core building block of quantum algorithms
(QPE, HHL, quantum simulation).

—iHt

o Trotterization approximates e using native gate sequences.
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Motivation & Context

For a quantum system with Hamiltonian H, the time evolution of a state
|1(t)) is governed by:

[(t)) = U(t)](0)), where U(t) = e Ht/h

e Time evolution e~ is a core building block of quantum algorithms
(QPE, HHL, quantum simulation).

o Trotterization approximates e~*Ht using native gate sequences.

o Challenge: Error scales poorly with precision &:

1 ) _1
Number of steps ~ = (first order), ~ e » for order p
€
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Motivation & Context

For a quantum system with Hamiltonian H, the time evolution of a state
|1(t)) is governed by:

[(t)) = U(t)](0)), where U(t) = e Ht/h

e Time evolution e~ is a core building block of quantum algorithms
(QPE, HHL, quantum simulation).

Trotterization approximates e~ "t using native gate sequences.

Challenge: Error scales poorly with precision &:

1 ) _1
Number of steps ~ = (first order), ~ e » for order p
€

Goal: Improve precision scaling via classical extrapolation, without
increasing quantum circuit depth.
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t Formulae (Backgroun

Given non-commuting operators A, B, we want to approximate:

e(A+B)t
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Product Formulae (Background)

Given non-commuting operators A, B, we want to approximate:

e(A+B)t
1st-order Trotter (Lie Product Formula):

e(A+B)t ~ (eAt/neBt/n>n + O(t2/n)

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Product Formulae (Background)

Given non-commuting operators A, B, we want to approximate:

o(A+B)t
1st-order Trotter (Lie Product Formula):
o(A+B)E (eAt/neBt/n>n +O(2/n)
2nd-order (Trotter—Suzuki):

e(A+B)t ~ (eAt/2neBt/neAt/2n>n + O(t3/n2)

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for

August 2, 2025



Product Formulae (Background)

Given non-commuting operators A, B, we want to approximate:

o(A+B)t
1st-order Trotter (Lie Product Formula):
o(A+B)E (eAt/neBt/n>n +O(2/n)
2nd-order (Trotter—Suzuki):
(A+B)E (eAt/2neBt/neAt/2n>n +O(3/n?)
2k-th-order (Recursive Suzuki Form):

Sok(t) = Sok—2(pxt)? Sox—2((1 — 4px)t) Sak—2(pxt)?

where py = 1/(4 — 41/(2k=1))
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Product Formulae (Implementation)

Given H=3"", Hj, Trotterize as:

U(t) ~ e Hjt/n

m
=1

J
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Product Formulae (Implementation)

Given H=3"", Hj, Trotterize as:

n

m
U(t) ~ H e Hjt/n

Jj=1

e Each Hj is a simple term (e.g., Pauli string).
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Product Formulae (Implementation)

Given H=3"", Hj, Trotterize as:

n

m
U(t) ~ H e Hjt/n

Jj=1

e Each Hj is a simple term (e.g., Pauli string).

o Implement e=Hit/" ysing native gates like R,, CNOT.
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Product Formulae (Implementation)

Given H=3"", Hj, Trotterize as:

n

m
U(t) ~ H e Hjt/n

Jj=1

e Each Hj is a simple term (e.g., Pauli string).
o Implement e=Hit/" ysing native gates like R,, CNOT.

@ Higher-order Trotter reduces error:

r = # of steps = O )‘COmmglﬁ

where Acomm Measures non-commutativity.
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Product Formulae (Implementation)

Given H=3"", Hj, Trotterize as:

n

m
U(t) ~ H e Hjt/n

Jj=1

e Each Hj is a simple term (e.g., Pauli string).
o Implement e=Hit/" ysing native gates like R,, CNOT.

@ Higher-order Trotter reduces error:

r = # of steps = O )‘COmmglﬁ

where Acomm Measures non-commutativity.

e Gate complexity: O(mr).
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Modern Approaches (Qubitization)

Qubitization is an alternative to time evolution, achieving optimal
asymptotic scaling with respect to error.
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Modern Approaches (Qubitization)

Qubitization is an alternative to time evolution, achieving optimal
asymptotic scaling with respect to error.
Basic ldea:

o Encode Hamiltonian H = > T, ajH; using a block encoding.

U= [H'/a ] where oo = Z |aj]
Jj

o Use quantum signal processing (QSP) to implement e~ with
optimal gate complexity: O (ma(t + log(1/€)))

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for

August 2, 2025



Modern Approaches (Qubitization)

Qubitization is an alternative to time evolution, achieving optimal
asymptotic scaling with respect to error.
Basic ldea:

o Encode Hamiltonian H = > T, ajH; using a block encoding.

U= [H'/a ] where oo = Z |aj]
Jj

o Use quantum signal processing (QSP) to implement e~ with
optimal gate complexity: O (ma(t + log(1/€)))
Advantages:

@ Asymptotically optimal error scaling with fewer steps needed than
Trotter at high precision.
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Modern Approaches (Qubitization)

Qubitization is an alternative to time evolution, achieving optimal
asymptotic scaling with respect to error.
Basic ldea:

o Encode Hamiltonian H = > T, ajH; using a block encoding.

U= [H'/a ] where oo = Z |aj]
Jj

o Use quantum signal processing (QSP) to implement e~ with
optimal gate complexity: O (ma(t + log(1/€)))
Advantages:

@ Asymptotically optimal error scaling with fewer steps needed than
Trotter at high precision.

Challenges:

@ Requires ancillary qubits.

@ Needs oracles for state preparation and more complex to compile and
implement on near-term devices.
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Why Trotterization?

o Low qubit overhead: Requires no ancillas or block-encoding circuits.
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Why Trotterization?

o Low qubit overhead: Requires no ancillas or block-encoding circuits.

@ Simple to compile: Operators decompose naturally into native gate
sets.
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Why Trotterization?

o Low qubit overhead: Requires no ancillas or block-encoding circuits.

@ Simple to compile: Operators decompose naturally into native gate
sets.

@ Structure-preserving: Tends to maintain conserved quantities,
symmetries, and locality.
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o Low qubit overhead: Requires no ancillas or block-encoding circuits.

@ Simple to compile: Operators decompose naturally into native gate
sets.

@ Structure-preserving: Tends to maintain conserved quantities,
symmetries, and locality.

o Commutator scaling: Errors scale with nested commutators, which
are often small in realistic systems. Performs substantially better
when Acomm << [|H]]1.
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Why Trotterization?

o Low qubit overhead: Requires no ancillas or block-encoding circuits.

@ Simple to compile: Operators decompose naturally into native gate
sets.

@ Structure-preserving: Tends to maintain conserved quantities,
symmetries, and locality.

o Commutator scaling: Errors scale with nested commutators, which
are often small in realistic systems. Performs substantially better
when Acomm << [|H]]1.

o Theoretically intriguing: Observed error often far below worst-case
bounds, suggesting gaps in our theoretical understanding.
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Richardson Extrapolation: Concept

Goal: Improve accuracy of quantum simulations without deeper circuits
when used as an algorithmic primitive

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2,



Richardson Extrapolation: Concept

Goal: Improve accuracy of quantum simulations without deeper circuits
when used as an algorithmic primitive

Trotterized observable:

0(5) = Oexact + Cl(Sp + C25p+1 + ..
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Richardson Extrapolation: Concept

Goal: Improve accuracy of quantum simulations without deeper circuits
when used as an algorithmic primitive

Trotterized observable:
0(5) = Oexact + Cl(Sp + C25p+1 + ..

Idea: Simulate at step sizes 1,02, - .., dk, then cancel leading errors via a

linear combination:

k
Oextrap = Za;O(é,-), Zai =1
i=1

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Richardson Extrapolation: Concept

Goal: Improve accuracy of quantum simulations without deeper circuits
when used as an algorithmic primitive

Trotterized observable:
0(5) = Oexact + Cl(Sp + C25p+1 + ..

Idea: Simulate at step sizes 1,02, - .., dk, then cancel leading errors via a

linear combination:
k
Oextrap = Zaio(éi)7 Zai =1
i=1

@ Choose «; to cancel terms 6P, 5PTL, . ..

@ Only classical postprocessing — no circuit depth increase!
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Richardson Extrapolation: Example (1st Order)

Suppose the Trotter error scales as:

f(8) = f(0) + ¢ + O(5?)
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Richardson Extrapolation: Example (1st Order)

Suppose the Trotter error scales as:
f(8) = f(0) + ¢ + O(5?)

Simulate at two step sizes: ¢ and 6/2

f(6/2) = f(0) + cg + O(6%)
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Richardson Extrapolation: Example (1st Order)

Suppose the Trotter error scales as:
f(8) = f(0) + ¢ + O(5?)
Simulate at two step sizes: § and §/2
f(6/2) = f(0) + cg +0(8%)

Construct extrapolated estimate:
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Richardson Extrapolation: Example (1st Order)

Suppose the Trotter error scales as:
f(8) = f(0) + ¢ + O(5?)

Simulate at two step sizes: ¢ and 6/2

)
f(6/2) = £(0) + 5 + O(6?)
Construct extrapolated estimate:

f(0/2) — 3£ (9)

/:(1)(5) = - %

= 2£(5/2) — £(5)

This cancels the O(9) term, improving error to:

FA(8) = £(0) + O(6?)
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Richardson Extrapolation: Benefits

e Improves accuracy: Cancels Trotter error up to order O(6™*1)
using m samples.
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Richardson Extrapolation: Benefits

e Improves accuracy: Cancels Trotter error up to order O(6™*1)
using m samples.

o Efficient postprocessing: Achieved purely classically; no increase in
circuit depth.
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Richardson Extrapolation: Benefits

e Improves accuracy: Cancels Trotter error up to order O(6™*1)
using m samples.

o Efficient postprocessing: Achieved purely classically; no increase in
circuit depth.

o Improves precision scaling;:
[FIM(8) = (O(T))| = O(s>m T2m(+1/P))

for symmetric order-p Trotter formulas.
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Richardson Extrapolation: Benefits

e Improves accuracy: Cancels Trotter error up to order O(6™*1)
using m samples.

o Efficient postprocessing: Achieved purely classically; no increase in
circuit depth.

o Improves precision scaling;:
[FIM(8) = (O(T))| = O(s>m T2m(+1/P))

for symmetric order-p Trotter formulas.

o Hardware-friendly: Well-suited to NISQ-era devices — short circuits
+ more measurements.
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Richardson Extrapolation: Benefits

e Improves accuracy: Cancels Trotter error up to order O(6™*1)
using m samples.

o Efficient postprocessing: Achieved purely classically; no increase in
circuit depth.

o Improves precision scaling;:
[FIM(8) = (O(T))| = O(s>m T2m(+1/P))

for symmetric order-p Trotter formulas.

o Hardware-friendly: Well-suited to NISQ-era devices — short circuits
+ more measurements.

Trade-off:
@ Requires multiple simulations at different §;.

@ Sensitive to sampling noise — averaging must be precise.

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 2, 2025



Richardson Extrapolation of Observable Estimates

Observable estimate (O);

Extrapolate -
<0>Ee

st s step size s
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
e Standard Richardson+Trotter methods only apply to f(A) = e~*At
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Te[f(A)p f(A)'O]
@ Occurs in quantum algorithms (HHL, QPE, etc.).

e Standard Richardson+Trotter methods only apply to f(A) = e~*At

@ Represent f(A) via Fourier series to reduce to exponentials.
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
e Standard Richardson+Trotter methods only apply to f(A) = e~*At
@ Represent f(A) via Fourier series to reduce to exponentials.
The key extension: prove Richardson extrapolation works for:
Te[eMt p e~ iHt2 O]
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
e Standard Richardson+Trotter methods only apply to f(A) = e~*At
@ Represent f(A) via Fourier series to reduce to exponentials.
The key extension: prove Richardson extrapolation works for:
Te[eMt p e~ iHt2 O]

As an intermediate step, we develop and prove algorithms:

Te[Zf(A)] = > cTr[Ze™™]
k=1
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Te[f(A)p F(A) O]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
e Standard Richardson+Trotter methods only apply to f(A) = e~*At
@ Represent f(A) via Fourier series to reduce to exponentials.
The key extension: prove Richardson extrapolation works for:
Te[eMt p e~ iHt2 O]

As an intermediate step, we develop and prove algorithms:

Te[Zf(A)] = > cTr[Ze™™]
k=1

We have it when Z = p, and extend to when || Z||; is bounded.
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Tr[Ze”"] has a bounded power series

We first need to show that we can apply Richardson extrapolation on each

of the Tr[Ze%*] terms, which requires that our desired quantities can be
written as a power series.
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AT] has a bounded power series

We first need to show that we can apply Richardson extrapolation on each
of the Tr[Ze%*] terms, which requires that our desired quantities can be
written as a power series.

Lemma (Observable Error Expansion)

For a staged p-th order product formula P of symmetry class o, the
observable satisfies:

Tr [ZPl/s(sT)}:Tr [zefAT]+ 3 INZ By k(T)HTYZ Fi(T, )]
JEoZiZ>p

@ s is the step size, so r :==1/s is the number of steps

o E. F: operator-valued error terms

@ Enables structured Richardson extrapolation of expectation values
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Deterministic Algorithm for Estimating Tr[Zf(A)]

Algorithm:

© Approximate f(A) by truncated Fourier expansion:
f(A) ~ Z,’le c et
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Deterministic Algorithm for Estimating Tr[Zf(A)]

Algorithm:

© Approximate f(A) by truncated Fourier expansion:
F(A) ~ I, cre
@ For each t;, estimate Tr[Ze%] via Richardson-extrapolated circuits.

Tr[Zet] = Z b Tr[ZPY% (s;tx)] each Tr[ZPY(sjty)] just sample
j=1
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Deterministic Algorithm for Estimating Tr[Zf(A)]
Algorithm:

© Approximate f(A) by truncated Fourier expansion:
f(A) ~ Z,’le c et

@ For each t;, estimate Tr[Ze%] via Richardson-extrapolated circuits.

Tr[Zet] = Z b Tr[ZPY% (s;tx)] each Tr[ZPY(sjty)] just sample
j=1

© Combine estimates using weighted sum:

K
Tr[Zf(A)] ~ Z ckTr[ZeiAtk]
k=1
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Deterministic Algorithm for Estimating Tr[Zf(A)]
Algorithm:

© Approximate f(A) by truncated Fourier expansion:
f(A) ~ Z,’le c et

@ For each t;, estimate Tr[Ze%] via Richardson-extrapolated circuits.

Tr[Zet] = Z b Tr[ZPY% (s;tx)] each Tr[ZPY(sjty)] just sample
j=1

© Combine estimates using weighted sum:
K
Tr[Zf(A)] ~ ) _ c Tr[Ze]
k=1

Gate complexity (per sample) O <F log(c/e) - (amaX'T‘)\commtmaX)Hl)

p
'

. =12 E 2 7 2K2 2
Sample complexity o <c|2 BI1ZIEK?m

1)
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Randomized Algorithm for Estimating T

Algorithm:

© Express trace as double sum over Fourier and Richardson terms:

Tr[Zf(A)] = Z Z kb T[ZPY/5 (sjt)]

k=1 j=1
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Randomized Algorithm for Estimating Tr[Zf(A)]

Algorithm:

© Express trace as double sum over Fourier and Richardson terms:

Tr[Zf(A)] = Z Z kb T[ZPY/5 (sjt)]

k=1 j=1

@ Sample pair (k,j) with probability Lo f|, where Z = 37, - [ckbj|
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Randomized Algorithm for Estimating Tr[Zf(A)]

Algorithm:
© Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] = Y abTe[ZPY9(sit)]
k=1 j=1

@ Sample pair (k,j) with probability Lo f|, where Z = 37, - [ckbj|
@ Estimate Tr[ZP/%(s;t,)] via Hadamard tests
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Randomized Algorithm for Estimating Tr[Zf(A)]

Algorithm:
© Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] = Y abTe[ZPY9(sit)]
k=1 j=1

@ Sample pair (k,j) with probability Lo f|, where Z = 37, - [ckbj|
@ Estimate Tr[ZP/%(s;t,)] via Hadamard tests

@ Return scaled, signed estimator based on samples
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Randomized Algorithm for Estimating Tr[Zf(A)]

Algorithm:
© Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] =D Y cubTe[ZPY (st )]
k=1 j=1

@ Sample pair (k,j) with probability Lo f|, where Z = 37, - [ckbj|
@ Estimate Tr[ZP/%(s;t,)] via Hadamard tests

@ Return scaled, signed estimator based on samples

Gate complexity (per sample) O (F log(c/e) - (amaXT)\mmmtmax)H%),
Sample complexity: O <”ZH%C2(I°§;°g(1/E))2 -log (%))
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Why is Randomized Better

Goal: Estimate weighted sum of traces:

Tr[ZF(A)] = D abyT[ZPY 9 (s55t4)]
ki
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Why is Randomized Better

Goal: Estimate weighted sum of traces:
Tr[Zf(A)] = ) _ cubiTr[ZPY9(sjty)]
k.j
Deterministic Method:
@ Computes all K - m terms equally

@ Wastes effort on small or negligible terms
@ Sample cost scales with ||c||3]b||3
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Why is Randomized Better

Goal: Estimate weighted sum of traces:

Tr[Zf(A)] = ) _ cubiTr[ZPY9(sjty)]
k.j
Deterministic Method:
@ Computes all K - m terms equally
@ Wastes effort on small or negligible terms
@ Sample cost scales with ||c||3]b||3
Randomized (Using Importance Sampling)
e Sample (k,j) with probability o |ckbj]
@ Focuses effort on largest contributors

2
e Cost scales with c? = (Zk’j |ckbj]>
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Why is Randomized Better

Goal: Estimate weighted sum of traces:
Tr[Zf(A)] = ) _ cubiTr[ZPY9(sjty)]
k.j
Deterministic Method:
@ Computes all K - m terms equally
@ Wastes effort on small or negligible terms
@ Sample cost scales with ||c||3]b||3
Randomized (Using Importance Sampling)
e Sample (k,j) with probability o |ckbj]
@ Focuses effort on largest contributors
2
e Cost scales with c? = (Zk’j |ckbj]>
Why Faster? By Cauchy-Schwarz:

c? < Km - ||c|3]|b||3 = Speedup up to factor of Km
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Richardson Extrapolation works for Tr[etpe="A* O]

Once again, we first need to show that we can use Richardson.
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Richardson Extrapolation works for Tr[etpe="A* O]

Once again, we first need to show that we can use Richardson.

Tr [eMpe=H20] — 378 byb, Tr P (580 (PY=(srt)) o] -
j=1r=1 -
. m m .
Tr |4 (e_'Ht2 - ZPl/sr(Srt/)T>] + |Tr Zpl/sj(sjtk) — eMn 2>
r=1 j=1
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Richardson Extrapolation works for Tr[etpe="A* O]

Once again, we first need to show that we can use Richardson.

m m

; ; [ T
Tr [e'l—ltl,()e‘_',_“'h2 O} — Z Z bjb, Tr Pl/sj(Sjtk),O (Pl/s’(srt/)) O:| =
j=1 r=1 L
. m m .
Tr |4 (e_'Ht2 - ZPl/sr(Srt/)T)] + |Tr Zpl/sj(sjtk) — eMn 2>
r=1 j=1

Lemma (Gate Complexity to estimate Tr(e % pe="At0))

We can estimate Tr(e% pe="At O) with Richardson error eg < € with
gate complexity

Caate = O(T - (10g(1/2))(108(</2)) - (amax T Acommtmar) ' »)
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Estimating

Use the same techniques as before (Hoeffding 4+ Importance Sampling)
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Estimating Tr(e”%pe~"tO)

Use the same techniques as before (Hoeffding 4+ Importance Sampling)

Lemma (Sample Complexity to estimate Tr(f(A)pf(A)T0))

Suppose ||O|| < 1. Then, to estimate
Tr[f(A)pf(A)T0]

to additive error £ with failure probability at most §, the number of
samples required satisfies

Coumpie = O (C“ : (|0g|602g(1/6))4 log <1>> ’
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Putting it all together

Theorem (Estimating Tr(f(A)p(f(A))'O) with Richardson)

To estimate Tr[f(A)p(f(A))T O] with error < & and success probability at
least 1 — 0 using the randomized Richardson-extrapolated method, the

resource costs are:
o Gate complexity (per sample):

Caate = O (T - (log(1/2))*(108(<(/3)/2)) - (amax T Acomm tmax(e/3)) 5

e Sample complexity:

Comple = O <c(e/3)4(lo€g;2log;(1/5—:))4 log (1))

August 2, 2025
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