
Early Fault-Tolerant Quantum Algorithms for Matrix
Functions via Trotter Extrapolation

Arul Rhik Mazumder
Co-mentor: Samson Wang

August 2, 2025

Arul Rhik Mazumder Co-mentor: Samson WangEarly Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter ExtrapolationAugust 2, 2025 1 / 18



Motivation & Context

For a quantum system with Hamiltonian H, the time evolution of a state
|ψ(t)⟩ is governed by:

|ψ(t)⟩ = U(t)|ψ(0)⟩, where U(t) = e−iHt/ℏ

Time evolution e−iHt is a core building block of quantum algorithms
(QPE, HHL, quantum simulation).

Trotterization approximates e−iHt using native gate sequences.

Challenge: Error scales poorly with precision ε:

Number of steps ∼ 1

ε
(first order), ∼ ε

− 1
p for order p

Goal: Improve precision scaling via classical extrapolation, without
increasing quantum circuit depth.
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Product Formulae (Background)

Given non-commuting operators A, B, we want to approximate:

e(A+B)t

1st-order Trotter (Lie Product Formula):

e(A+B)t ≈
(
eAt/neBt/n

)n
+O(t2/n)

2nd-order (Trotter–Suzuki):

e(A+B)t ≈
(
eAt/2neBt/neAt/2n

)n
+O(t3/n2)

2k-th-order (Recursive Suzuki Form):

S2k(t) = S2k−2(pkt)
2 S2k−2((1− 4pk)t)S2k−2(pkt)

2

where pk = 1/(4− 41/(2k−1))
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Product Formulae (Implementation)

Given H =
∑m

j=1Hj , Trotterize as:

U(t) ≈

 m∏
j=1

e−iHj t/n

n

Each Hj is a simple term (e.g., Pauli string).

Implement e−iHj t/n using native gates like Rz , CNOT.

Higher-order Trotter reduces error:

r = # of steps = O

(
λcomm

t1+1/p

ε1/p

)

where λcomm measures non-commutativity.

Gate complexity: O(mr).
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Modern Approaches (Qubitization)

Qubitization is an alternative to time evolution, achieving optimal
asymptotic scaling with respect to error.

Basic Idea:

Encode Hamiltonian H =
∑m

j=1 ajHj using a block encoding.

U =

[
H/α ·
· ·

]
where α =

∑
j

|aj |

Use quantum signal processing (QSP) to implement e−iHt with
optimal gate complexity: O (mα(t + log(1/ϵ)))

Advantages:

Asymptotically optimal error scaling with fewer steps needed than
Trotter at high precision.

Challenges:

Requires ancillary qubits.

Needs oracles for state preparation and more complex to compile and
implement on near-term devices.
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Why Trotterization?

Low qubit overhead: Requires no ancillas or block-encoding circuits.

Simple to compile: Operators decompose naturally into native gate
sets.

Structure-preserving: Tends to maintain conserved quantities,
symmetries, and locality.

Commutator scaling: Errors scale with nested commutators, which
are often small in realistic systems. Performs substantially better
when λcomm << ∥H∥1.
Theoretically intriguing: Observed error often far below worst-case
bounds, suggesting gaps in our theoretical understanding.
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Richardson Extrapolation: Concept

Goal: Improve accuracy of quantum simulations without deeper circuits
when used as an algorithmic primitive

Trotterized observable:

O(δ) = Oexact + c1δ
p + c2δ

p+1 + · · ·

Idea: Simulate at step sizes δ1, δ2, . . . , δk , then cancel leading errors via a

linear combination:

Oextrap =
k∑

i=1

αiO(δi ),
∑

αi = 1

Choose αi to cancel terms δp, δp+1, . . .

Only classical postprocessing — no circuit depth increase!
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Richardson Extrapolation: Example (1st Order)

Suppose the Trotter error scales as:

f (δ) = f (0) + cδ +O(δ2)

Simulate at two step sizes: δ and δ/2

f (δ/2) = f (0) + c
δ

2
+O(δ2)

Construct extrapolated estimate:

F (1)(δ) =
f (δ/2)− 1

2 f (δ)

1− 1
2

= 2f (δ/2)− f (δ)

This cancels the O(δ) term, improving error to:

F (1)(δ) = f (0) +O(δ2)
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Richardson Extrapolation: Benefits

Improves accuracy: Cancels Trotter error up to order O(δm+1)
using m samples.

Efficient postprocessing: Achieved purely classically; no increase in
circuit depth.

Improves precision scaling:

|F (m)(δ)− ⟨O(T )⟩| = O(s2mT 2m(1+1/p))

for symmetric order-p Trotter formulas.

Hardware-friendly: Well-suited to NISQ-era devices — short circuits
+ more measurements.

Trade-off:

Requires multiple simulations at different δi .

Sensitive to sampling noise — averaging must be precise.
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Richardson Extrapolation of Observable Estimates

step size s

Observable estimate ⟨O⟩t

s1 s2

⟨O⟩(ex)t

Extrapolated
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Tr[f (A)ρ f (A)†O]

Occurs in quantum algorithms (HHL, QPE, etc.).

Standard Richardson+Trotter methods only apply to f (A) = e−iAt

Represent f (A) via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:

Tr[e iHt1ρ e−iHt2O]

As an intermediate step, we develop and prove algorithms:

Tr[Zf (A)] =
m∑

k=1

ckTr[Ze
iAtk ]

We have it when Z = ρ, and extend to when ∥Z∥1 is bounded.
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Tr[Ze iAT ] has a bounded power series

We first need to show that we can apply Richardson extrapolation on each
of the Tr[Ze iAtk ] terms, which requires that our desired quantities can be
written as a power series.

Lemma (Observable Error Expansion)

For a staged p-th order product formula P of symmetry class σ, the
observable satisfies:

Tr
[
Z P1/s(sT )

]
= Tr

[
Z e iAT

]
+

∑
j∈σZ+≥p

s jTr[Z Ẽj+1,K (T )]+Tr[Z F̃K (T , s)]

s is the step size, so r := 1/s is the number of steps

Ẽ , F̃ : operator-valued error terms

Enables structured Richardson extrapolation of expectation values
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Deterministic Algorithm for Estimating Tr[Zf (A)]

Algorithm:
1 Approximate f (A) by truncated Fourier expansion:

f (A) ≈
∑K

k=1 cke
iAtk

2 For each tk , estimate Tr[Ze iAtk ] via Richardson-extrapolated circuits.

Tr[Ze iAtk ] =
m∑
j=1

bjTr[ZP1/sj (sj tk)] each Tr[ZP1/sj (sj tk)] just sample

3 Combine estimates using weighted sum:

Tr[Zf (A)] ≈
K∑

k=1

ckTr[Ze
iAtk ]

Gate complexity (per sample) O
(
Γ log(c/ε) · (amaxΥλcommtmax)

1+ 1
p

)
,

Sample complexity O
(

∥c⃗∥22∥b⃗∥22∥Z∥21K2m2

ε2
· log

(
1
δ

))
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Randomized Algorithm for Estimating Tr[Zf (A)]

Algorithm:

1 Express trace as double sum over Fourier and Richardson terms:

Tr[Zf (A)] =
K∑

k=1

m∑
j=1

ckbjTr[ZP1/sj (sj tk)]

2 Sample pair (k , j) with probability
|ckbj |
Z , where Z =

∑
k,j |ckbj |

3 Estimate Tr[ZP1/sj (sj tk)] via Hadamard tests

4 Return scaled, signed estimator based on samples

Gate complexity (per sample) O
(
Γ log(c/ε) · (amaxΥλcommtmax)

1+ 1
p

)
,

Sample complexity: O
(
∥Z∥21c2(log log(1/ε))2

ε2
· log

(
1
δ

))
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Why is Randomized Better

Goal: Estimate weighted sum of traces:

Tr[Zf (A)] =
∑
k,j

ckbjTr[ZP1/sj (sj tk)]

Deterministic Method:

Computes all K ·m terms equally

Wastes effort on small or negligible terms

Sample cost scales with ∥c∥22∥b∥22
Randomized (Using Importance Sampling)

Sample (k , j) with probability ∝ |ckbj |
Focuses effort on largest contributors

Cost scales with c2 =
(∑

k,j |ckbj |
)2

Why Faster? By Cauchy-Schwarz:

c2 ≤ Km · ∥c∥22∥b∥22 ⇒ Speedup up to factor of Km
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Richardson Extrapolation works for Tr[e iAtρe−iAt ′O]

Once again, we first need to show that we can use Richardson.

∣∣∣∣∣∣Tr
[
e iHt1ρe−iHt2O

]
−

m∑
j=1

m∑
r=1

bjbrTr

[
P1/sj (sj tk)ρ

(
P1/sr (sr tl)

)†
O

]∣∣∣∣∣∣ =∣∣∣∣∣Tr
[
Z1

(
e−iHt2 −

m∑
r=1

P1/sr (sr tl)
†

)]∣∣∣∣∣+
∣∣∣∣∣∣Tr
 m∑

j=1

P1/sj (sj tk)− e iHt1

Z2

∣∣∣∣∣∣
Lemma (Gate Complexity to estimate Tr(e iAtkρe−iAtlO))

We can estimate Tr(e iAtkρe−iAtlO) with Richardson error εR ≤ ε with
gate complexity

Cgate = O(Γ · (log(1/ε))(log(c/ε)) · (amaxΥλcommtmax)
1+ 1

p )
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Estimating Tr(e iAtkρe−iAtlO)

Use the same techniques as before (Hoeffding + Importance Sampling)

Lemma (Sample Complexity to estimate Tr(f (A)ρf (A)†O))

Suppose ∥O∥ ≤ 1. Then, to estimate

Tr[f (A)ρf (A)†O]

to additive error ε with failure probability at most δ, the number of
samples required satisfies

Csample = O
(
c4 · (log log(1/ε))4

ε2
log

(
1

δ

))
,
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Putting it all together

Theorem (Estimating Tr(f (A)ρ(f (A))†O) with Richardson)

To estimate Tr[f (A)ρ(f (A))†O] with error ≤ ε and success probability at
least 1− δ using the randomized Richardson-extrapolated method, the
resource costs are:

Gate complexity (per sample):

Cgate = O
(
Γ · (log(1/ε))2(log(c(ε/3)/ε)) · (amaxΥλcommtmax(ε/3))

1+ 1
p

)
Sample complexity:

Csample = O
(
c(ε/3)4(log log(1/ε))4

ε2
log

(
1

δ

))
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