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Section 1

Quadratic Unconstrained Binary
Optimization

The QUBO Model

The Universal Language for Optimization



QUBO Model: Definition and Universality

o Definition: Quadratic Unconstrained Binary Optimization (QUBO)
models problems in operations research, finance, and physics.
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QUBO Model: Definition and Universality

o Definition: Quadratic Unconstrained Binary Optimization (QUBO)
models problems in operations research, finance, and physics.

@ Mathematical Form: Minimize a quadratic function of binary
variables x € {0, 1}
min [x" Qx + ¢]
xe{0,1}"

> Q is the QUBO matrix.
» The constant c is irrelevant to the optimal solution.
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o Definition: Quadratic Unconstrained Binary Optimization (QUBO)
models problems in operations research, finance, and physics.

@ Mathematical Form: Minimize a quadratic function of binary
variables x € {0, 1}

min [x" Qx + ¢]
xe{0,1}"

> Q is the QUBO matrix.
» The constant c is irrelevant to the optimal solution.

o Expanded/Triangular Form: Since x? =

i =

min XX + iXi + ¢
X;E{O,l} ; QIJ 17 Z Qu ]

x; for binary variables:
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QUBO Model: Definition and Universality

o Definition: Quadratic Unconstrained Binary Optimization (QUBO)
models problems in operations research, finance, and physics.

@ Mathematical Form: Minimize a quadratic function of binary
variables x € {0, 1}

min [x" Qx + ¢]
xe{0,1}"

> Q is the QUBO matrix.
» The constant c is irrelevant to the optimal solution.

o Expanded/Triangular Form: Since x? =

i =

min XX + iXi + ¢
X;E{O,l} ; QIJ 17 Z Qu ]

o Universality: QUBO provides a unified framework for representing
combinatorial optimization, including many NP-hard problems.

x; for binary variables:
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Classical Approaches for QUBO

o Exact Algorithms:
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Classical Approaches for QUBO

o Exact Algorithms:

» Methods like branch-and-bound and semidefinite optimization are used,
but their runtime is limited by the NP-Hard nature of the problems.
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Classical Approaches for QUBO

o Exact Algorithms:

» Methods like branch-and-bound and semidefinite optimization are used,
but their runtime is limited by the NP-Hard nature of the problems.

@ Heuristic and Metaheuristic Algorithms:

» These general-purpose techniques are often applied to find high-quality,
near-optimal solutions quickly.
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Classical Approaches for QUBO

o Exact Algorithms:

» Methods like branch-and-bound and semidefinite optimization are used,
but their runtime is limited by the NP-Hard nature of the problems.

@ Heuristic and Metaheuristic Algorithms:

» These general-purpose techniques are often applied to find high-quality,
near-optimal solutions quickly.
» Key Examples:
@ Simulated Annealing (SA): A metaheuristic that uses a
"temperature” to explore the solution space and escape local minima.
@ Genetic Algorithms.
© Tabu Search.
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Classical Approaches for QUBO

o Exact Algorithms:

» Methods like branch-and-bound and semidefinite optimization are used,
but their runtime is limited by the NP-Hard nature of the problems.

@ Heuristic and Metaheuristic Algorithms:

» These general-purpose techniques are often applied to find high-quality,
near-optimal solutions quickly.
» Key Examples:
@ Simulated Annealing (SA): A metaheuristic that uses a
"temperature” to explore the solution space and escape local minima.
@ Genetic Algorithms.
© Tabu Search.
» These methods offer competitive performance against specialized
algorithms in practice.

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 5/52



The Quantum Landscape for QUBO

@ Quantum Relevance: QUBOs are mathematically equivalent to the
Ising Model, making them central to quantum optimization.

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 6/52



The Quantum Landscape for QUBO

@ Quantum Relevance: QUBOs are mathematically equivalent to the
Ising Model, making them central to quantum optimization.
e 1. Quantum Annealing (QA):

» Method: Finds the global minimum by utilizing quantum fluctuations,
particularly suited for dedicated hardware (e.g., D-Wave).
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» Method: Finds the global minimum by utilizing quantum fluctuations,
particularly suited for dedicated hardware (e.g., D-Wave).
e 2. Gate-Based Quantum Computing:

» Key Algorithm: Quantum Approximate Optimization Algorithm
(QAOQA), a hybrid classical-quantum approach using quantum gates to
find approximate solutions.
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The Quantum Landscape for QUBO

@ Quantum Relevance: QUBOs are mathematically equivalent to the
Ising Model, making them central to quantum optimization.
e 1. Quantum Annealing (QA):
» Method: Finds the global minimum by utilizing quantum fluctuations,
particularly suited for dedicated hardware (e.g., D-Wave).
e 2. Gate-Based Quantum Computing:

» Key Algorithm: Quantum Approximate Optimization Algorithm
(QAOQA), a hybrid classical-quantum approach using quantum gates to
find approximate solutions.

e 3. Hybrid/Variational Quantum-Classical Heuristics:

» Methods that combine quantum subroutines with classical
optimization, such as Quantum-Assisted Genetic Algorithms (QAGA).
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The Quantum Landscape for QUBO

@ Quantum Relevance: QUBOs are mathematically equivalent to the

Ising Model, making them central to quantum optimization.

e 1. Quantum Annealing (QA):

» Method: Finds the global minimum by utilizing quantum fluctuations,

particularly suited for dedicated hardware (e.g., D-Wave).
2. Gate-Based Quantum Computing:

» Key Algorithm: Quantum Approximate Optimization Algorithm
(QAOQA), a hybrid classical-quantum approach using quantum gates to
find approximate solutions.

3. Hybrid/Variational Quantum-Classical Heuristics:

» Methods that combine quantum subroutines with classical

optimization, such as Quantum-Assisted Genetic Algorithms (QAGA).
4. Quantum-Inspired Algorithms:

» Classical algorithms (like Quantum Particle Swarm Optimization) that
incorporate principles from quantum mechanics to enhance
performance without using quantum hardware.
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Section 2

Canonical QUBO Formulation

The Number Partitioning Problem

Balancing the Binary Partition



Canonical Problem: Number Partitioning (NP)

o Problem Definition (NP-Hard): Given a set S of positive integers
{s1,52,...,5n}, partition S into two subsets, A and S\ A.
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Canonical Problem: Number Partitioning (NP)

o Problem Definition (NP-Hard): Given a set S of positive integers
{s1,52,...,5n}, partition S into two subsets, A and S\ A.

@ Objective: Minimize the absolute difference (d) between the sum of
elements in A and the sum of elements in S\ A.

d= Zs,-— Z S

sieA siES\A
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Canonical Problem: Number Partitioning (NP)

o Problem Definition (NP-Hard): Given a set S of positive integers
{s1,52,...,5n}, partition S into two subsets, A and S\ A.

@ Objective: Minimize the absolute difference (d) between the sum of
elements in A and the sum of elements in S\ A.

d= Zs,-— Z S

sieA siES\A

@ Goal: Make the sums of the two subsets as close as possible.
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Canonical Problem: Number Partitioning (NP)

o Problem Definition (NP-Hard): Given a set S of positive integers
{s1,52,...,5n}, partition S into two subsets, A and S\ A.

@ Objective: Minimize the absolute difference (d) between the sum of
elements in A and the sum of elements in S\ A.

d= Zs,-— Z S

S;i€A sieS\A

@ Goal: Make the sums of the two subsets as close as possible.

Modeling with Binary Variables
Decision Variable x; € {0,1}:

@ x; =1 = s; belongs to set A.

@ x;, =0 = s; belongs to set S\ A.

Let ¢ be the total sum of all elements in S.
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Number Partitioning QUBO

@ Sums of the Two Partitions:

n
Sum(A) = Zs,x, Sum(S\ A)=c— Zs,-x,-

i=1
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Number Partitioning QUBO

@ Sums of the Two Partitions:

n
Sum(A) = Zs,x, Sum(S\ A)=c— Zs,-x,-

i=1

e The Difference (d): The difference d between these two sums:

d= <ZS,'X,') — (C — ZS;X,‘) = 2iS;X,' — C
i i i=1
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Number Partitioning QUBO

@ Sums of the Two Partitions:

n
Sum(A) = Zs,x, Sum(S\ A)=c— Zs,-x,-

i=1

e The Difference (d): The difference d between these two sums:
n
d= <ZS;X;) — (C — ZS;X,') = 2ZS;X,' — C
i i i=1

o QUBO Objective: Since we want to minimize the absolute
difference |d|, the equivalent unconstrained binary optimization is to
minimize the square of the difference:

2
n
in d>={2) sx—
= (25
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Number Partitioning QUBO (continued)

@ Goal: Express the squared difference as the QUBO quadratic form,
minx' Qx (ignoring the constant term c? from expansion).

2
n

(2 Z SiX; — c) x x"Qx
i=1
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Number Partitioning QUBO (continued)

@ Goal: Express the squared difference as the QUBO quadratic form,
minx' Qx (ignoring the constant term c? from expansion).

2
n

(2 Z SiX; — c) x x"Qx
i=1

e QUBO Matrix Coefficients (gj;): The coefficients are derived from
the squared objective function, where Q is a symmetric matrix.

~_J si(si—c) ifi=j (Diagonal, linear term in x;)
%= 2s;s; if i #j (Off-diagonal, quadratic term x;x;)
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Number Partitioning QUBO (continued)

@ Goal: Express the squared difference as the QUBO quadratic form,
minx' Qx (ignoring the constant term c? from expansion).

2
n
(2 Z SixXj — c> o X1 Qx
i=1
e QUBO Matrix Coefficients (gj;): The coefficients are derived from
the squared objective function, where Q is a symmetric matrix.
{ si(si—c) if i=j (Diagonal, linear term in x;)
qij =

2s;s; if i #j (Off-diagonal, quadratic term x;x;)

e Significance: This matrix Q is the input for all subsequent
algorithms (SA, QA, QAOQA).
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Section 3

Practical QUBO Formulation

Cancer Genomics Pathways

|dentifying Driver Mutations from TCGA Data



Practical Problem: Cancer Genomics (TCGA)

@ Goal: The de novo identification of altered cancer pathways from
gene mutation data (e.g., The Cancer Genome Atlas - TCGA).
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Practical Problem: Cancer Genomics (TCGA)

@ Goal: The de novo identification of altered cancer pathways from
gene mutation data (e.g., The Cancer Genome Atlas - TCGA).

@ Problem Type: This complex practical problem non-trivially reduces
to the Independent Set problem, meaning it is NP-Complete and a
suitable candidate for quantum optimization.
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Practical Problem: Cancer Genomics (TCGA)

@ Goal: The de novo identification of altered cancer pathways from
gene mutation data (e.g., The Cancer Genome Atlas - TCGA).

@ Problem Type: This complex practical problem non-trivially reduces
to the Independent Set problem, meaning it is NP-Complete and a
suitable candidate for quantum optimization.

o Data Modeling: Hypergraph

» Genes (g;) are the vertices.

» Patients (P;) are the hyperedges (groups of mutated genes).

» Modeled by the Incidence Matrix (B) where bjj = 1 if gene i is
mutated in patient j.
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Practical Problem: Cancer Genomics (TCGA)

@ Goal: The de novo identification of altered cancer pathways from
gene mutation data (e.g., The Cancer Genome Atlas - TCGA).

@ Problem Type: This complex practical problem non-trivially reduces
to the Independent Set problem, meaning it is NP-Complete and a
suitable candidate for quantum optimization.

o Data Modeling: Hypergraph

» Genes (g;) are the vertices.

» Patients (P;) are the hyperedges (groups of mutated genes).

» Modeled by the Incidence Matrix (B) where bjj = 1 if gene i is
mutated in patient j.

@ Graph Laplacian: The gene-gene correlation matrix is derived:

L =BB'=D+A
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Cancer Genomics: Criteria for Driver Genes

@ The Graph Laplacian is decomposed into two matrices corresponding
to two key combinatorial criteria for identifying " driver” mutations:
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Cancer Genomics: Criteria for Driver Genes

@ The Graph Laplacian is decomposed into two matrices corresponding
to two key combinatorial criteria for identifying " driver” mutations:
o 1. Coverage (Maximize x' Dx):

> We seek genes that are prevalent across a large patient cohort.
» Modeled by the Degree Matrix (D): A diagonal matrix where dj; is
the number of patients affected by gene /.
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Cancer Genomics: Criteria for Driver Genes

@ The Graph Laplacian is decomposed into two matrices corresponding
to two key combinatorial criteria for identifying " driver” mutations:
o 1. Coverage (Maximize x' Dx):
> We seek genes that are prevalent across a large patient cohort.
» Modeled by the Degree Matrix (D): A diagonal matrix where dj; is
the number of patients affected by gene /.
o 2. Exclusivity (Minimize x" Ax):
» Multiple mutations are unlikely in a single patient for the same pathway.
» Modeled by the Adjacency Matrix (A): aj; is the number of patients
affected by both gene i and gene ;.
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Cancer Genomics: The QUBO Formulation

o Decision Vector x: x; = 1 if gene i in the pathway; x; = 0 otherwise.
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Cancer Genomics: The QUBO Formulation

o Decision Vector x: x; = 1 if gene i in the pathway; x; = 0 otherwise.

o Combined Objective: We must find a pathway that maximizes
coverage and minimizes exclusivity. This is formulated as:

min [(Exclusivity Term) — a(Coverage Term)]
X
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Cancer Genomics: The QUBO Formulation

o Decision Vector x: x; = 1 if gene i in the pathway; x; = 0 otherwise.

o Combined Objective: We must find a pathway that maximizes
coverage and minimizes exclusivity. This is formulated as:

min [(Exclusivity Term) — a(Coverage Term)]
X

@ The Final QUBO Objective: miny [xTAx — axTDx]
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Cancer Genomics: The QUBO Formulation

Decision Vector x: x; = 1 if gene j in the pathway; x; = 0 otherwise.

Combined Objective: We must find a pathway that maximizes
coverage and minimizes exclusivity. This is formulated as:

min [(Exclusivity Term) — a(Coverage Term)]
X

@ The Final QUBO Objective: miny [xTAx — axTDx]
Expanded QUBO Form: min, [27:1 J'-':l ajjXixj — Yy iq d,-,-x,-]
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Cancer Genomics: The QUBO Formulation

o Decision Vector x: x; = 1 if gene i in the pathway; x; = 0 otherwise.

o Combined Objective: We must find a pathway that maximizes
coverage and minimizes exclusivity. This is formulated as:

min [(Exclusivity Term) — a(Coverage Term)]
X

@ The Final QUBO Objective: miny [xTAx — axTDx]
e Expanded QUBO Form: min, [27:1 J'-':l ajjXixj — Yy iq d,-,-x,-]

o Penalty Factor a: The weight o > 1 reflects that the coverage
criterion (the linear term) is more important than exclusivity.
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Section 4

Building Blocks of Quantum Computation

Circuits and the Ising Model

Bridging QUBO to Quantum Hardware



Qubits and Superposition

@ Qubits (Quantum Bits): The fundamental unit of quantum
information, analogous to a classical bit. They have two basis states,

o= () - )
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Qubits and Superposition

@ Qubits (Quantum Bits): The fundamental unit of quantum
information, analogous to a classical bit. They have two basis states,

o= () - )

e Superposition: Unlike classical bits (restricted to 0 or 1), a qubit can
exist in a superposition of both states simultaneously:

) = al0) + B[1)

« and 3 are complex probability amplitudes.
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Qubits and Superposition

@ Qubits (Quantum Bits): The fundamental unit of quantum
information, analogous to a classical bit. They have two basis states,

o= () - )

e Superposition: Unlike classical bits (restricted to 0 or 1), a qubit can
exist in a superposition of both states simultaneously:

) = al0) + B[1)

« and 3 are complex probability amplitudes.

@ Born’s Rule: Measurement forces the qubit to collapse to a basis
state (|0) or |1)) with probabilities:

P(0) = |af?, P(1)=[8|*, where o +|8]* =1
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Visualizing Qubit States (Bloch Sphere)

@ Bloch Sphere: A geometrical representation of a pure single-qubit
state, where the surface represents all possible states.

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 17 /52



Visualizing Qubit States (Bloch Sphere)

@ Bloch Sphere: A geometrical representation of a pure single-qubit
state, where the surface represents all possible states.

@ The poles correspond to the computational basis states.
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Visualizing Qubit States (Bloch Sphere)

@ Bloch Sphere: A geometrical representation of a pure single-qubit
state, where the surface represents all possible states.

@ The poles correspond to the computational basis states.

@ Any point on the surface is a superposition state |¢).
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Visualizing Qubit States (Bloch Sphere)

@ Bloch Sphere: A geometrical representation of a pure single-qubit
state, where the surface represents all possible states.

@ The poles correspond to the computational basis states.

@ Any point on the surface is a superposition state |¢).

10) 10) 10)

D D

X

1) 1)

Figure: Bloch Sphere representations of |0),[1), and |+) = %|0> + %|1>
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Single-Qubit Gates

e Quantum Gates: These are Unitary Operators (U) that act as
rotations and reflections on the single-qubit state vector.
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Single-Qubit Gates

e Quantum Gates: These are Unitary Operators (U) that act as
rotations and reflections on the single-qubit state vector.
o Key Single-Qubit Gates:
» Hadamard (H): Creates a uniform superposition from a basis state. It
is crucial for initial state preparation.
1

HIO) = 5

(10) + 1) =1+)
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Single-Qubit Gates

e Quantum Gates: These are Unitary Operators (U) that act as
rotations and reflections on the single-qubit state vector.
o Key Single-Qubit Gates:
» Hadamard (H): Creates a uniform superposition from a basis state. It
is crucial for initial state preparation.
1
V2

» Pauli Gates (ox,0y,0z): Implement 180° rotations around the X, Y,
and Z axes on the Bloch sphere.

HI0) = —=(10) + 1)) = |+)
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Single-Qubit Gates

e Quantum Gates: These are Unitary Operators (U) that act as
rotations and reflections on the single-qubit state vector.
o Key Single-Qubit Gates:

» Hadamard (H): Creates a uniform superposition from a basis state. It
is crucial for initial state preparation.

1
\7@(|0> +1) =1+

» Pauli Gates (ox,0y,0z): Implement 180° rotations around the X, Y,
and Z axes on the Bloch sphere.
» Rotation Gates (Rx(0), Ry(6), Rz(0)): Implement arbitrary
parameterized rotations around the axes.
* These parameterized gates are the core components optimized by the
classical loop in Variational Quantum Algorithms (VQAs) like QAOA.

H|0) =
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Visualizing Single-Qubit Gates

Animations of key single-qubit gates acting on the Bloch sphere

0) 10) 10)
o = —~
7~ /K\ T /J:'\\
7 \;y //\jy / \)/y
X T X 7 « X 7
) 4"1/) 1)
Hadamard (H) Pauli-X (ox) Rotation Rx(7/2)

Naturally all gates are reversible (except measurement!).
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Multi-Qubit Gates

@ Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.
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Multi-Qubit Gates

@ Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.

e CNOT (CX): The fundamental gate for creating entanglement (a
non-classical correlation).
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Multi-Qubit Gates

@ Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.

e CNOT (CX): The fundamental gate for creating entanglement (a
non-classical correlation).

» The state of the target qubit is flipped only if the control qubit is |1).
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Multi-Qubit Gates

@ Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.

e CNOT (CX): The fundamental gate for creating entanglement (a
non-classical correlation).

» The state of the target qubit is flipped only if the control qubit is |1).

» Controlled-Z (CZ): Flips the phase of the target qubit only if the
control qubit is |1).
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Multi-Qubit Gates

@ Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.
e CNOT (CX): The fundamental gate for creating entanglement (a
non-classical correlation).
» The state of the target qubit is flipped only if the control qubit is |1).
» Controlled-Z (CZ): Flips the phase of the target qubit only if the
control qubit is |1).
e QUBO Interaction Gate (Rzz(0)):
» This gate applies a phase shift based on the correlation (or alignment)
of the two qubits’ Z-states.
» It is essential for implementing the Cost Hamiltonian in quantum
optimization algorithms, as it directly models the two-body interaction
terms (x;x;) present in QUBOs.
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Quantum Circuits

o Definition: A quantum circuit is a conceptual model representing a
sequence of quantum gates applied to an initial state of qubits.
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Quantum Circuits

o Definition: A quantum circuit is a conceptual model representing a
sequence of quantum gates applied to an initial state of qubits.
o Execution Order:
» Circuits are typically read and drawn left-to-right (time evolution).
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Quantum Circuits

o Definition: A quantum circuit is a conceptual model representing a
sequence of quantum gates applied to an initial state of qubits.
o Execution Order:
» Circuits are typically read and drawn left-to-right (time evolution).
» Mathematically, the corresponding unitary operators (U;) are multiplied
in the reverse order (right-to-left) due to matrix multiplication:

[out) = UrUp—1- - Ui|thin)
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Quantum Circuits

o Definition: A quantum circuit is a conceptual model representing a
sequence of quantum gates applied to an initial state of qubits.
o Execution Order:
» Circuits are typically read and drawn left-to-right (time evolution).
» Mathematically, the corresponding unitary operators (U;) are multiplied
in the reverse order (right-to-left) due to matrix multiplication:

[out) = UrUp—1- - Ui|thin)

e Tensor Product of States: When multiple quantum states (each in
different Hilbert spaces H;) or registers are combined, such as
|Y1) € Hi, |t2) € Ha, ..., the joint system is described by:

[1) @ [th2) @ -+ @ |¢hp) = [Y1p2 - ) EH1QH2 @ -+ @ Hp

oy =0 =(r)e())= 1'<(1)) _ :
00-(, i)

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 21/52



Quantum Circuits Visualization

@ Consider the quantum expression:

[(CX)- (2 ® Z2) - (X @ H)]|00)
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Quantum Circuits Visualization

@ Consider the quantum expression:
[(CX)-(Z® Z) - (X ® H)]|00)

@ Step-by-step gate application (right-to-left):
@ Apply X to g[0] and H to q[1]
@ Then apply Z to both qubits
© Finally apply a CX gate with control g[1] and target g[0]
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Quantum Circuits Visualization

@ Consider the quantum expression:
[(CX)-(Z® Z) - (X ® H)]|00)

@ Step-by-step gate application (right-to-left):
@ Apply X to g[0] and H to q[1]
@ Then apply Z to both qubits
© Finally apply a CX gate with control g[1] and target g[0]

e This circuit transforms |00) into a specific entangled state.

R |
- QB

Figure: Quantum circuit represents: [(CX) x (Z ® Z) x (X ® H)]|00).
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Hamiltonian and Quantum Evolution

e The Hamiltonian (H):

» A Hermitian operator representing the energy of a quantum system.
> Its eigenvalues correspond to the possible energy levels of the system.
» The corresponding eigenvectors are the quantum states.
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Hamiltonian and Quantum Evolution

e The Hamiltonian (H):

» A Hermitian operator representing the energy of a quantum system.
> Its eigenvalues correspond to the possible energy levels of the system.
» The corresponding eigenvectors are the quantum states.
@ The Optimization Goal: We seek the lowest energy state, known as
the ground state, which corresponds to the optimal solution.
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Hamiltonian and Quantum Evolution

e The Hamiltonian (H):

» A Hermitian operator representing the energy of a quantum system.
> Its eigenvalues correspond to the possible energy levels of the system.
» The corresponding eigenvectors are the quantum states.

@ The Optimization Goal: We seek the lowest energy state, known as
the ground state, which corresponds to the optimal solution.

e Time Evolution (Schrodinger Equation): The Hamiltonian governs
how a quantum state |¢)(t)) changes over time:

.0
s [9(8)) = HI(2))
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Hamiltonian and Quantum Evolution

e The Hamiltonian (H):

» A Hermitian operator representing the energy of a quantum system.
> Its eigenvalues correspond to the possible energy levels of the system.
» The corresponding eigenvectors are the quantum states.

@ The Optimization Goal: We seek the lowest energy state, known as
the ground state, which corresponds to the optimal solution.

e Time Evolution (Schrodinger Equation): The Hamiltonian governs
how a quantum state |¢)(t)) changes over time:

0
h—|(t)) = H|y(t
i (8)) = HIv(0))
@ Relevance to QA: This continuous time evolution is the basis for

Quantum Annealing (QA), where the system is slowly steered from a
known initial state to the problem’s ground state.
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Ising Model and QUBO

e Ising Model: A mathematical tool from physics (ferromagnetism)
that models systems with interacting "spins” (o; € {—1,1}).
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Ising Model and QUBO

e Ising Model: A mathematical tool from physics (ferromagnetism)
that models systems with interacting "spins” (o; € {—1,1}).

o Ising Hamiltonian (Hising): The energy function is minimized when
solving the Ising problem:

H(o) = — Z Jijoioj — Z hio;
i<j i
» The first term represents two-body interactions (Jj).
» The second term represents external biases (h;).
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Ising Model and QUBO

e Ising Model: A mathematical tool from physics (ferromagnetism)
that models systems with interacting "spins” (o; € {—1,1}).

o Ising Hamiltonian (Hising): The energy function is minimized when
solving the Ising problem:

H(o) = — Z Jijoioj — Z hio;
i<j i
» The first term represents two-body interactions (Jj).
» The second term represents external biases (h;).
@ The Critical Link: QUBO-Ising Equivalence
» QUBO (binary variables x; € {0,1}) is directly convertible to the Ising
Model (spin variables o; € {—1,1}).
» The substitution is: x; = HT"
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Section 5

Optimization Landscape

Algorithms for QUBOs

Classical and Quantum Approaches to Optimization Problems



Algorithms: Simulated Annealing (SA) - Classical

@ Analogy: SA is a heuristic inspired by the physical process of
annealing (gradual cooling to reach a stable, low-energy state).
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Algorithms: Simulated Annealing (SA) - Classical

@ Analogy: SA is a heuristic inspired by the physical process of
annealing (gradual cooling to reach a stable, low-energy state).

e Goal: Find a high-quality heuristic solution (low-cost, or low-energy)
to an optimization problem, such as a QUBO.
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Algorithms: Simulated Annealing (SA) - Classical

@ Analogy: SA is a heuristic inspired by the physical process of
annealing (gradual cooling to reach a stable, low-energy state).

e Goal: Find a high-quality heuristic solution (low-cost, or low-energy)
to an optimization problem, such as a QUBO.

o Process Overview:

@ Map the target problem to a cost function f(x) (energy).

@ Initialize with a random solution x and a high temperature T.

© lteratively generate a neighboring solution x’ by applying small
perturbations.
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Algorithms: Simulated Annealing (SA) - Classical

@ Analogy: SA is a heuristic inspired by the physical process of
annealing (gradual cooling to reach a stable, low-energy state).

e Goal: Find a high-quality heuristic solution (low-cost, or low-energy)
to an optimization problem, such as a QUBO.
@ Process Overview:

@ Map the target problem to a cost function f(x) (energy).

@ Initialize with a random solution x and a high temperature T.

© lteratively generate a neighboring solution x’ by applying small
perturbations.

o Key Feature: Escaping Local Minima

» If the neighbor is better (AE < 0), accept it deterministically.
> If the neighbor is worse (AE > 0), accept it probabilistically. This
resistance to sticking to local minima is what sets SA apart.
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Simulated Annealing: Temperature Schedule and Cooling

@ Acceptance Probability: The likelihood of accepting a worse
solution x’ (AE = f(x') — f(x) > 0) is given by the formula derived
from thermal annealing:

AE
Paccept = €XP _?
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Simulated Annealing: Temperature Schedule and Cooling

@ Acceptance Probability: The likelihood of accepting a worse
solution x’ (AE = f(x') — f(x) > 0) is given by the formula derived
from thermal annealing:

AE
Paccept = €XP _?

o Exploration vs. Exploitation:

» High T (Start): pyccep: is high. The algorithm explores widely,
accepting many worse moves.

» Low T (End): paccept is low. The algorithm mostly accepts better
moves, exploiting the best solution found so far.
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Simulated Annealing: Temperature Schedule and Cooling

@ Acceptance Probability: The likelihood of accepting a worse
solution x’ (AE = f(x') — f(x) > 0) is given by the formula derived
from thermal annealing:

AE
Paccept = €XP _?

o Exploration vs. Exploitation:
» High T (Start): pyccep: is high. The algorithm explores widely,
accepting many worse moves.
» Low T (End): paccept is low. The algorithm mostly accepts better
moves, exploiting the best solution found so far.
@ Cooling Process: T is gradually reduced at each step using a
cooling factor « (0 < a < 1): Thew = - Toig
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Simulated Annealing: Temperature Schedule and Cooling

@ Acceptance Probability: The likelihood of accepting a worse
solution x’ (AE = f(x') — f(x) > 0) is given by the formula derived
from thermal annealing:

AE
Paccept = €XP _?

o Exploration vs. Exploitation:

» High T (Start): pyccep: is high. The algorithm explores widely,
accepting many worse moves.

» Low T (End): paccept is low. The algorithm mostly accepts better
moves, exploiting the best solution found so far.

@ Cooling Process: T is gradually reduced at each step using a
cooling factor « (0 < a < 1): Thew = - Toig
o Trade-offs:

» Advantage: Simple and effective at escaping local minima.
» Limitation: Performance is highly dependent on careful tuning of
parameters (initial T, «, iterations per temperature).
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Simulated Annealing Visualization

Step 0, T=2.00
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Algorithms: Quantum Annealing (QA) - Quantum

e Type: A example of Adiabatic Quantum Computing (AQC).
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Algorithms: Quantum Annealing (QA) - Quantum

e Type: A example of Adiabatic Quantum Computing (AQC).

@ Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.
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Algorithms: Quantum Annealing (QA) - Quantum

e Type: A example of Adiabatic Quantum Computing (AQC).

@ Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.

@ Mechanism: Leverages Adiabatic Theorem and Quantum Tunneling.
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Algorithms: Quantum Annealing (QA) - Quantum

e Type: A example of Adiabatic Quantum Computing (AQC).

@ Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.

@ Mechanism: Leverages Adiabatic Theorem and Quantum Tunneling.
e Hardware: Highly specialized for optimization (D-Wave QPUs).
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Algorithms: Quantum Annealing (QA) - Quantum

Type: A example of Adiabatic Quantum Computing (AQC).

@ Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.

@ Mechanism: Leverages Adiabatic Theorem and Quantum Tunneling.
e Hardware: Highly specialized for optimization (D-Wave QPUs).

QA vs. SA: The Quantum Advantage
e Simulated Annealing (SA) must climb energy barriers.

@ QA uses quantum tunneling to bypass energy barriers, potentially
reaching the global optimum more efficiently.
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Algorithms: Quantum Annealing (QA) - Quantum

e Type: A example of Adiabatic Quantum Computing (AQC).

@ Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.

@ Mechanism: Leverages Adiabatic Theorem and Quantum Tunneling.

e Hardware: Highly specialized for optimization (D-Wave QPUs).

QA vs. SA: The Quantum Advantage
e Simulated Annealing (SA) must climb energy barriers.

@ QA uses quantum tunneling to bypass energy barriers, potentially
reaching the global optimum more efficiently.

Mapping the Problem

The QUBO problem x” Qx is mapped to the equivalent Ising
Hamiltonian Hc¢, where the variables are quantum spins o; € {—1,1}.
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Quantum Annealing: The Adiabatic Theorem

@ Core Principle: A quantum system initially in the ground state of a
time-dependent Hamiltonian H(t) will remain in its instantaneous
ground state throughout the evolution, provided the evolution is
sufficiently slow (adiabaticity).
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Quantum Annealing: The Adiabatic Theorem

@ Core Principle: A quantum system initially in the ground state of a
time-dependent Hamiltonian H(t) will remain in its instantaneous
ground state throughout the evolution, provided the evolution is
sufficiently slow (adiabaticity).

o Time-Dependent Hamiltonian: The process is governed by two
combined Hamiltonians:

H(s(t)) = (1 — s(t))Hp + s(t)Hc

» s(t) € [0,1] is the monotonic scheduling function.
» At t=0(s=0), H=Hp.
» Att=T (s=1), H=Hc.
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Quantum Annealing: The Adiabatic Theorem

@ Core Principle: A quantum system initially in the ground state of a
time-dependent Hamiltonian H(t) will remain in its instantaneous
ground state throughout the evolution, provided the evolution is
sufficiently slow (adiabaticity).

o Time-Dependent Hamiltonian: The process is governed by two
combined Hamiltonians:

H(s(t)) = (1 — s(t))Hp + s(t)Hc

» s(t) € [0,1] is the monotonic scheduling function.
» At t=0(s=0), H=Hp.
» Att=T (s=1), H=Hc.

e Driver Hamiltonian (Hp): A simple Hamiltonian whose ground
state is easy to prepare (usually uniform superposition):

Hp = —Z(f)((i)
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Quantum Annealing: The Adiabatic Theorem

@ Core Principle: A quantum system initially in the ground state of a
time-dependent Hamiltonian H(t) will remain in its instantaneous
ground state throughout the evolution, provided the evolution is
sufficiently slow (adiabaticity).

o Time-Dependent Hamiltonian: The process is governed by two
combined Hamiltonians:

H(s(t)) = (1 — s(t))Hp + s(t)Hc

» s(t) € [0,1] is the monotonic scheduling function.
» At t=0(s=0), H=Hp.
» Att=T (s=1), H=Hc.

e Driver Hamiltonian (Hp): A simple Hamiltonian whose ground
state is easy to prepare (usually uniform superposition):

Hp = — Z O‘>(<i)
e Cost Hamiltonian (H¢): Encodes the optimization problem.
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Quantum Annealing: Spectral Gap and Speed

e The Spectral Gap (A(s)): The energy difference of the ground
state (Ep) and first excited state (E;) of the Hamiltonian H(s).

A(s) = Ei(s) — Eo(s)
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Quantum Annealing: Spectral Gap and Speed
e The Spectral Gap (A(s)): The energy difference of the ground
state (Ep) and first excited state (E;) of the Hamiltonian H(s).
A(s) = Ei(s) — Eo(s)
e Minimum Gap (Amin): The min gap over the entire annealing path.

» The minimum gap often occurs where the problem is hardest (a
"quantum critical point”).
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Quantum Annealing: Spectral Gap and Speed

e The Spectral Gap (A(s)): The energy difference of the ground
state (Ep) and first excited state (E;) of the Hamiltonian H(s).

A(s) = Ei(s) — Eo(s)

e Minimum Gap (Amin): The min gap over the entire annealing path.
» The minimum gap often occurs where the problem is hardest (a
"quantum critical point”).

o Adiabatic Condition: To ensure the system remains in the ground
state (and thus finds the optimal solution), the total annealing time
T must be long enough:

1

min
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Quantum Annealing: Spectral Gap and Speed

e The Spectral Gap (A(s)): The energy difference of the ground
state (Ep) and first excited state (E;) of the Hamiltonian H(s).

A(s) = Ei(s) — Eo(s)

e Minimum Gap (Amin): The min gap over the entire annealing path.
» The minimum gap often occurs where the problem is hardest (a
"quantum critical point”).

o Adiabatic Condition: To ensure the system remains in the ground
state (and thus finds the optimal solution), the total annealing time
T must be long enough:

T 5
Agnin

o Implication: A smaller min gap requires a much longer annealing

time T to avoid exciting the system into a non-optimal state.
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Quantum Annealing: Workflow (D-Wave Example)

o Initial State (s = 0): The Hamiltonian is dominated by Hp (Pauli-X
terms), forcing all qubits into a uniform superposition.
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Quantum Annealing: Workflow (D-Wave Example)

o Initial State (s = 0): The Hamiltonian is dominated by Hp (Pauli-X
terms), forcing all qubits into a uniform superposition.

e Annealing Process (0 < s < 1): The coefficients A(s) (Driver)
decrease and B(s) (Cost) increase. The energy landscape gradually
deforms from a simple, flat landscape to the complex, spiked
landscape defined by Hc.
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Quantum Annealing: Workflow (D-Wave Example)

o Initial State (s = 0): The Hamiltonian is dominated by Hp (Pauli-X
terms), forcing all qubits into a uniform superposition.

e Annealing Process (0 < s < 1): The coefficients A(s) (Driver)
decrease and B(s) (Cost) increase. The energy landscape gradually
deforms from a simple, flat landscape to the complex, spiked
landscape defined by Hc.

@ The His,g Combination:

Als i B(s ; N (i
Hising = —(2 ) Zagé) + g ) Z h;ag) + ZJ;J-J;)J(ZJ)
i i i<j
Initial Driver Hamiltonian Final Cost Hamiltonian
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Quantum Annealing: Workflow (D-Wave Example)

o Initial State (s = 0): The Hamiltonian is dominated by Hp (Pauli-X
terms), forcing all qubits into a uniform superposition.

e Annealing Process (0 < s < 1): The coefficients A(s) (Driver)
decrease and B(s) (Cost) increase. The energy landscape gradually
deforms from a simple, flat landscape to the complex, spiked
landscape defined by Hc.

@ The His,g Combination:

Als i B(s ; N (i
Hising = —(2 ) Zagé) + g ) Z h,-crg) + ZJ;J-J;)J(ZJ)
i i i<j
Initial Driver Hamiltonian Final Cost Hamiltonian

e Final State (s = 1): The Hamiltonian is dominated by H¢ (Pauli-Z
terms). The qubits collapse to the configuration that minimizes this
energy, yielding the optimal QUBO solution.
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Quantum Annealing Visualization

Quantum Annealing Step 0

87 — H(t), s=0.00
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Algorithms: Quantum Approximate Optimization
Algorithm (QAOA) - Quantum

o Type: A Quantum-Classical Hybrid Algorithm designed for
combinatorial optimization problems (e.g., QUBOs).
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Algorithms: Quantum Approximate Optimization
Algorithm (QAOA) - Quantum

o Type: A Quantum-Classical Hybrid Algorithm designed for
combinatorial optimization problems (e.g., QUBOs).

o NISQ Era Algorithm: It has a relatively low circuit depth, making it

more resilient to decoherence on current Noisy Intermediate-Scale
Quantum (NISQ) devices.
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Algorithms: Quantum Approximate Optimization
Algorithm (QAOA) - Quantum

o Type: A Quantum-Classical Hybrid Algorithm designed for
combinatorial optimization problems (e.g., QUBOs).

o NISQ Era Algorithm: It has a relatively low circuit depth, making it
more resilient to decoherence on current Noisy Intermediate-Scale
Quantum (NISQ) devices.

e Motivation: Discretizing Quantum Annealing (QA)

» QA relies on continuous-time evolution, which isn't natively digital.
» QAOA uses Trotterization to simulate this continuous evolution using
alternating, repeated gate sequences (ansatz).
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Algorithms: Quantum Approximate Optimization
Algorithm (QAOA) - Quantum

o Type: A Quantum-Classical Hybrid Algorithm designed for
combinatorial optimization problems (e.g., QUBOs).

o NISQ Era Algorithm: It has a relatively low circuit depth, making it
more resilient to decoherence on current Noisy Intermediate-Scale
Quantum (NISQ) devices.

e Motivation: Discretizing Quantum Annealing (QA)

» QA relies on continuous-time evolution, which isn't natively digital.
» QAOA uses Trotterization to simulate this continuous evolution using
alternating, repeated gate sequences (ansatz).

o Workflow: A quantum circuit generates a state, and a optimizer
tunes the circuit's parameters to minimize the expected cost.
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QAOA: The Parametrized Quantum Circuit

o Initial State Preparation: The circuit begins by applying a
Hadamard gate (H) to all n qubits, creating a uniform superposition
of all 2" possible solutions:

[$(0)) = [+)®"

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 35/52



QAOA: The Parametrized Quantum Circuit

o Initial State Preparation: The circuit begins by applying a
Hadamard gate (H) to all n qubits, creating a uniform superposition
of all 2" possible solutions:

[$(0)) = [+)®"

@ Alternating Operators: The core consists of p repeated layers of
operators derived from the Hamiltonians used in Quantum Annealing:

@ Cost Operator (e~"7"c): Encodes the objective function.
@ Mixer Operator (e~ /#M): Explores the solution space.
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QAOA: The Parametrized Quantum Circuit

o Initial State Preparation: The circuit begins by applying a
Hadamard gate (H) to all n qubits, creating a uniform superposition
of all 2" possible solutions:

[4(0)) = [+)®"
@ Alternating Operators: The core consists of p repeated layers of
operators derived from the Hamiltonians used in Quantum Annealing:

@ Cost Operator (e~"7"c): Encodes the objective function.
@ Mixer Operator (e~ /#M): Explores the solution space.

@ The Ansatz (U): The quantum state after p layers is:
(8, 7)) = [T e~ ey (0))
i=1

@ Parameterized by 2p angles: B = {B1,....8p}and ¥ ={y1,..., %}
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QAOA: Cost Hamiltonian (H¢) - (Problem Encoding)

@ Purpose: The Cost Hamiltonian (H¢) encodes the QUBO problem
(the objective function) into the quantum system'’s energy landscape.
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QAOA: Cost Hamiltonian (H¢) - (Problem Encoding)

@ Purpose: The Cost Hamiltonian (H¢) encodes the QUBO problem
(the objective function) into the quantum system'’s energy landscape.

@ Structure: It uses Pauli-Z operators (07), as the computational basis
states |0), |1) are eigenstates of o7.

HC = Z h,'O'(Zi) + ZJ,JO'g)U(ZJ)

i<j
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QAOA: Cost Hamiltonian (H¢) - (Problem Encoding)

@ Purpose: The Cost Hamiltonian (H¢) encodes the QUBO problem
(the objective function) into the quantum system'’s energy landscape.

@ Structure: It uses Pauli-Z operators (07), as the computational basis
states |0), |1) are eigenstates of o7.

HC = Z h,'O'(Zi) + Z J,JO'g)U(ZJ)
i i<j
o Coefficients: The h; and Jj; terms are derived directly from the linear
and quadratic coefficients of the QUBO matrix Q.
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QAOA: Cost Hamiltonian (H¢) - (Problem Encoding)

Purpose: The Cost Hamiltonian (H¢) encodes the QUBO problem
(the objective function) into the quantum system'’s energy landscape.
Structure: It uses Pauli-Z operators (07), as the computational basis
states |0), |1) are eigenstates of o7.

HC = Z h,'O'g) + Z J,'J'O'g)U(ZJ)
i i<j
Coefficients: The h; and J;j terms are derived directly from the linear
and quadratic coefficients of the QUBO matrix Q.
Cost Operator (e~"7"c): This unitary operator applies the phase
encoding the cost, parameterized by ~.

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 36 /52



QAOA: Cost Hamiltonian (H¢) - (Problem Encoding)

Purpose: The Cost Hamiltonian (H¢) encodes the QUBO problem
(the objective function) into the quantum system'’s energy landscape.
Structure: It uses Pauli-Z operators (07), as the computational basis
states |0), |1) are eigenstates of o7.

He = Zhaz +3" Jjo oY
i<j

Coefficients: The h; and J,-j terms are derived directly from the linear
and quadratic coefficients of the QUBO matrix Q.
Cost Operator (e~"7"c): This unitary operator applies the phase
encoding the cost, parameterized by ~.
Implementation: It is approximated (via Trotterization) using a
series of single-qubit Z-rotations and two-qubit Uzz gates:

—/'yHC ~ H e—l’yJ,JO’Z UZ H e—/’yh O'Z

i<j
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QAOA: Mixer Hamiltonian (Hp) - Exploration

@ Purpose: The Mixer Hamiltonian (Hp) drives the exploration of the
solution space, preventing from getting trapped in local minima.
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@ Purpose: The Mixer Hamiltonian (Hp) drives the exploration of the
solution space, preventing from getting trapped in local minima.

@ Structure: It's typically a sum of single-qubit Pauli-X operators
(ox), which cause transitions between |0) and |1):

Hp = —Zag)
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@ Structure: It's typically a sum of single-qubit Pauli-X operators
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o Mixer Operator: The parameterized unitary operator that executes
the mixing step: e~ /#Hp,
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QAOA: Mixer Hamiltonian (Hp) - Exploration

@ Purpose: The Mixer Hamiltonian (Hp) drives the exploration of the
solution space, preventing from getting trapped in local minima.

@ Structure: It's typically a sum of single-qubit Pauli-X operators
(ox), which cause transitions between |0) and |1):

Hp = —Zag)

o Mixer Operator: The parameterized unitary operator that executes
the mixing step: e~ /#Hp,

o Implementation: The operator is implemented using single-qubit
Rotation Gates around the X-axis (Rx):

o—iBHD H o= iBTY
i
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QAOA: Mixer Hamiltonian (Hp) - Exploration

@ Purpose: The Mixer Hamiltonian (Hp) drives the exploration of the
solution space, preventing from getting trapped in local minima.

@ Structure: It's typically a sum of single-qubit Pauli-X operators
(ox), which cause transitions between |0) and |1):

Hp = —Zag)

o Mixer Operator: The parameterized unitary operator that executes
the mixing step: e~ /#Hp,

o Implementation: The operator is implemented using single-qubit
Rotation Gates around the X-axis (Rx):

o—iBHD H o= iBTY
i

@ Parameters: The 3 angles are part of the 2p total parameters
optimized by the classical algorithm.
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QAOA: The Hybrid Optimization Loop

@ Quantum Execution:

» The circuit |1(3, 7)) is executed on a quantum computer.
» Measure the state to estimate (y)|H¢|v)), indicating solution quality.
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QAOA: The Hybrid Optimization Loop

© Quantum Execution:

» The circuit |1(3, 7)) is executed on a quantum computer.

» Measure the state to estimate (y)|H¢|v)), indicating solution quality.
@ Classical Optimization:

» A classical optimizer (e.g., gradient descent or heuristic methods)
receives the estimated expected value.

» The optimizer adjusts the 2p parameters (ﬁ, %) to minimize this
expected cost.
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» Measure the state to estimate (y)|H¢|v)), indicating solution quality.
@ Classical Optimization:

» A classical optimizer (e.g., gradient descent or heuristic methods)
receives the estimated expected value.

» The optimizer adjusts the 2p parameters (ﬁ, %) to minimize this
expected cost.

© Iteration: Steps 1 and 2 are repeated until the parameters converge.
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QAOA: The Hybrid Optimization Loop

© Quantum Execution:

» The circuit |1(3, 7)) is executed on a quantum computer.

» Measure the state to estimate (y)|H¢|v)), indicating solution quality.
@ Classical Optimization:

» A classical optimizer (e.g., gradient descent or heuristic methods)
receives the estimated expected value.

» The optimizer adjusts the 2p parameters (ﬁ, %) to minimize this
expected cost.

© Iteration: Steps 1 and 2 are repeated until the parameters converge.

@ Output: The final, optimized quantum state is measured to obtain
the approximate binary solution to the QUBO problem.
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QAOA Visualization

Update variational parameters Calculate expected
{vi, Bi} with optimizer objective value

|
— — Rx(62)

— Rx(51

)
0) e~mHe = Rx(B1) | e~"#He | Rx(52) =~
)

— Rx(81) | — Rx(82) ]

Figure: QAOA Circuit: Each layer alternates between a problem-specific cost
unitary e~"7H¢ and a mixing unitary Rx(3). The parameters (71, 51), (72, 32) are

optimized classically.
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Section 6

Implementation and Workflow

Solving QUBOs in Code

From QUBO Matrix to Algorithm Output



Vanilla QAOA: Framework and Input

o Framework: Vanilla QAOA utilizes a standard quantum-classical
hybrid approach (e.g., using Qiskit) for solving QUBOs.
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Vanilla QAOA: Framework and Input

o Framework: Vanilla QAOA utilizes a standard quantum-classical
hybrid approach (e.g., using Qiskit) for solving QUBOs.

o Input: The optimization problem must first be converted into the
QUBO form, providing the:

» Quadratic coefficients (Qj).
» Linear coefficients (c;).
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Vanilla QAOA: Framework and Input

o Framework: Vanilla QAOA utilizes a standard quantum-classical
hybrid approach (e.g., using Qiskit) for solving QUBOs.

o Input: The optimization problem must first be converted into the
QUBO form, providing the:

» Quadratic coefficients (Qj).
» Linear coefficients (c;).

o Parameters: The circuit's performance depends on 2p tunable
angles: 7 (Cost) and 3 (Mixer). These are determined by the
optimizer.
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Vanilla QAOA: Cost Operator (H¢) Implementation

@ Goal: Encode the QUBO objective function into the Cost
Hamiltonian (H¢) in the Pauli-Z basis (¢7).

i
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Vanilla QAOA: Cost Operator (Hc¢) Implementation

@ Goal: Encode the QUBO objective function into the Cost
Hamiltonian (Hc) in the Pauli-Z basis (7).

e Mapping H¢ (Pauli-Z basis):

1 1
HCZZZQUU’ZUJZ—ZE Ci+ZQU of
iJ J

i
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Vanilla QAOA: Cost Operator (Hc¢) Implementation

@ Goal: Encode the QUBO objective function into the Cost
Hamiltonian (Hc) in the Pauli-Z basis (7).

e Mapping H¢ (Pauli-Z basis):

1 1
HCZZZQUU’ZUJZ—ZE Ci+ZQU of
iJ J

i
e Cost Operator (e~""H¢): This unitary applies the cost function’s
phase to the quantum state, parameterized by 7.
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Vanilla QAOA: Cost Operator (Hc¢) Implementation

@ Goal: Encode the QUBO objective function into the Cost
Hamiltonian (Hc) in the Pauli-Z basis (7).

e Mapping H¢ (Pauli-Z basis):

1 1
e =3 bauefof -S4 (a4 | of
iJ i J
e Cost Operator (e~""H¢): This unitary applies the cost function’s

phase to the quantum state, parameterized by 7.

o Implementation: The operator is constructed using standard
quantum gates:

» Single-qubit Rz gates (to handle the linear o7 terms).
» Two-qubit Rzz gates (to handle the quadratic o7 o terms).
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Vanilla QAOA: Cost Operator (Hc¢) Implementation

@ Goal: Encode the QUBO objective function into the Cost
Hamiltonian (Hc) in the Pauli-Z basis (7).

e Mapping H¢ (Pauli-Z basis):

1 1
=3 oyeof - 305 (v 300y ) o7
iJj i J
e Cost Operator (e~""H¢): This unitary applies the cost function’s
phase to the quantum state, parameterized by 7.

o Implementation: The operator is constructed using standard
quantum gates:
» Single-qubit Rz gates (to handle the linear o7 terms).
» Two-qubit Rzz gates (to handle the quadratic o7 o terms).
The rotation angles are directly proportional to the v parameter and
the respective QUBO coefficients.
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Vanilla QAOA: Mixer Operator (Hp) Implementation

o Goal: Implement the Mixer Operator (e ~/#HM) to induce transitions
between basis states, enabling exploration.
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Vanilla QAOA: Mixer Operator (Hy) Implementation

o Goal: Implement the Mixer Operator (e ~/#HM) to induce transitions
between basis states, enabling exploration.

e Mixer Hamiltonian (Hy): It is defined as a sum of Pauli-X

operators:
n
= =3 )
i=1
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Vanilla QAOA: Mixer Operator (Hy) Implementation

o Goal: Implement the Mixer Operator (e ~/#HM) to induce transitions
between basis states, enabling exploration.

e Mixer Hamiltonian (Hy): It is defined as a sum of Pauli-X

operators:
n
= =3 )
i=1

o Implementation Strategy: The operator is implemented using
simple single-qubit rotations.
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Vanilla QAOA: Mixer Operator (Hy) Implementation

o Goal: Implement the Mixer Operator (e ~/#HM) to induce transitions
between basis states, enabling exploration.

e Mixer Hamiltonian (Hy): It is defined as a sum of Pauli-X

operators:
n
= =3 )
i=1

o Implementation Strategy: The operator is implemented using
simple single-qubit rotations.

e Gate Used: Single-qubit Rotation Gates around the X-axis (Rx).
@ The Operator:
n
e Hm — H Rx(28)

i=1
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Vanilla QAOA: Mixer Operator (Hy) Implementation

o Goal: Implement the Mixer Operator (e~"#H") to induce transitions
between basis states, enabling exploration.

e Mixer Hamiltonian (Hy): It is defined as a sum of Pauli-X

operators:
n
=3
i=1

o Implementation Strategy: The operator is implemented using
simple single-qubit rotations.

e Gate Used: Single-qubit Rotation Gates around the X-axis (Rx).
@ The Operator:
n
e Hm — H Rx(28)

i=1
Parameters: The (3 angle is one of the 2p parameters (7, 5) forming
the parameter vector that is optimized by the classical algorithm.
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Vanilla QAOA: Circuit Construction

e Initialization: Apply Hadamards (H) to all n qubits to create a
uniform superposition (|1(0))).
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Vanilla QAOA: Circuit Construction

e Initialization: Apply Hadamards (H) to all n qubits to create a
uniform superposition (|1(0))).

e Ansatz Layering (p-depth): The core quantum circuit repeats an
alternating sequence of parameterized operators p times:

(3. 9) = [T (e7Heem 8 ) ju(0))
k=1
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Vanilla QAOA: Circuit Construction

e Initialization: Apply Hadamards (H) to all n qubits to create a
uniform superposition (|1(0))).

e Ansatz Layering (p-depth): The core quantum circuit repeats an
alternating sequence of parameterized operators p times:

P
(8. 9) = [T (e Hee M) 1u(0))
k=1
@ Hybrid Core: This sequence is the ansatz, parameterized by 2p
angles, 5 (Mixer) and 4 (Cost).
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Vanilla QAOA: Circuit Construction

e Initialization: Apply Hadamards (H) to all n qubits to create a
uniform superposition (|1(0))).

e Ansatz Layering (p-depth): The core quantum circuit repeats an
alternating sequence of parameterized operators p times:

P
(8. 9) = [T (e Hee M) 1u(0))
k=1
@ Hybrid Core: This sequence is the ansatz, parameterized by 2p
angles, 5 (Mixer) and 4 (Cost).

Qiskit Circuit (Example for p = 1)

@ i —— R e
i
- 1 — R,
o s B
i
a2 - H ] R n_
o . -3
c 4 v v3
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Vanilla QAOA: Hybrid Optimization Workflow

e Quantum Step: Measure final state (e.g., 1000 shots) to estimate
expected cost (|Hc|).
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Vanilla QAOA: Hybrid Optimization Workflow

e Quantum Step: Measure final state (e.g., 1000 shots) to estimate
expected cost (|Hc|).

o Classical Step: Optimizer (e.g., COBYLA) updates parameters

-,

(¥, B) to minimize cost.
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Vanilla QAOA: Hybrid Optimization Workflow

e Quantum Step: Measure final state (e.g., 1000 shots) to estimate
expected cost (|Hc|).

o Classical Step: Optimizer (e.g., COBYLA) updates parameters

-,

(7, ) to minimize cost.
@ Result: Final sampling yields bitstring probabilities.

@ Solution: Most frequent bitstring — approximate optimum.
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Vanilla QAOA: Hybrid Optimization Workflow

e Quantum Step: Measure final state (e.g., 1000 shots) to estimate
expected cost (|Hc|).

o Classical Step: Optimizer (e.g., COBYLA) updates parameters

-,

(7, ) to minimize cost.
@ Result: Final sampling yields bitstring probabilities.

@ Solution: Most frequent bitstring — approximate optimum.

Workflow Summary

QAOA alternates between quantum measurements (to evaluate cost) and
classical optimization (to improve parameters).
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Vanilla QAOA: Result Example

Number Partitioning Bitstrings
162

160 -

120 1
102
96 95
84
77
80 1
65 65

Count

49

40 = -

33
24

15

()
S
S

~ O~ O ~ O
S&SSs5 S
S O S O O o

1001

~N O o o (s}
7885558575
§898SIFSS

Interpreting the Output

Most probable bitstring (e.g., 0010) = Partition {1,5,5} vs. {11} in the
number partitioning problem.

= — T
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Quantum Annealing for Cancer Genomics

e Platform: Uses Quantum Annealers (e.g., D-Wave), which provide
thousands of qubits to tackle larger, real-world QUBO instances.
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e Platform: Uses Quantum Annealers (e.g., D-Wave), which provide

thousands of qubits to tackle larger, real-world QUBO instances.

@ Application: The Cancer Genomics pathway identification problem.
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Quantum Annealing for Cancer Genomics

e Platform: Uses Quantum Annealers (e.g., D-Wave), which provide
thousands of qubits to tackle larger, real-world QUBO instances.

@ Application: The Cancer Genomics pathway identification problem.

e QUBO Objective Recap: The goal is to minimize exclusivity (A)
while maximizing coverage (D):

min [x"Ax — axTDx]
X
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Quantum Annealing for Cancer Genomics

e Platform: Uses Quantum Annealers (e.g., D-Wave), which provide
thousands of qubits to tackle larger, real-world QUBO instances.

@ Application: The Cancer Genomics pathway identification problem.

e QUBO Objective Recap: The goal is to minimize exclusivity (A)
while maximizing coverage (D):

min [x"Ax — axTDx]
X

e Data Preprocessing: Requires significant effort to construct the
QUBO coefficients from raw biological data (e.g., patient mutation
lists from TCGA).
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Quantum Annealing for Cancer Genomics

e Platform: Uses Quantum Annealers (e.g., D-Wave), which provide
thousands of qubits to tackle larger, real-world QUBO instances.

@ Application: The Cancer Genomics pathway identification problem.

e QUBO Objective Recap: The goal is to minimize exclusivity (A)
while maximizing coverage (D):

min [x"Ax — axTDx}
X

e Data Preprocessing: Requires significant effort to construct the
QUBO coefficients from raw biological data (e.g., patient mutation
lists from TCGA).

Input Data

Mutation data is sourced from databases like cBioPortal (TCGA AML
study) to establish a Patient-Gene dictionary.
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QA Preprocessing: Constructing D and A

o 1. Degree Matrix (D): Defines the linear terms (x " Dx).
» Role: Measures Coverage (gene prevalence across patients).
» Construction: D is diagonal; D;; equals the number of patients
affected by gene i.
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QA Preprocessing: Constructing D and A

o 1. Degree Matrix (D): Defines the linear terms (x " Dx).
» Role: Measures Coverage (gene prevalence across patients).
» Construction: D is diagonal; D;; equals the number of patients
affected by gene i.
o 2. Adjacency Matrix (A): Defines the quadratic terms (x " Ax).
» Role: Measures Exclusivity (gene-pair co-occurrence).
» Construction: Aj is the number of patients mutated by both gene /
and gene j. Requires iterating over all gene pairs for each patient.
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QA Preprocessing: Constructing D and A

o 1. Degree Matrix (D): Defines the linear terms (x " Dx).
» Role: Measures Coverage (gene prevalence across patients).
» Construction: D is diagonal; D;; equals the number of patients
affected by gene i.
o 2. Adjacency Matrix (A): Defines the quadratic terms (x " Ax).
» Role: Measures Exclusivity (gene-pair co-occurrence).
» Construction: Aj is the number of patients mutated by both gene /
and gene j. Requires iterating over all gene pairs for each patient.

Patient-Gene Dictionary:

TCGA-AB-288@2

['IDH1', 'PTPN11', 'NPM1', 'MT-ND5', 'DNMT3A']
TCGA-AB-2804

['PHF6"]

TCGA-AB-28@5

['IDH2', 'RUNX1']

TCGA-AB-28@6

['KDM6A', 'PLCE1', 'CROCC']

Figure 15: Sample of Patient-Gene Dictionary (Mapping patients to mutated
gene lists)
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QA Workflow: BQM and Embedding

o BQM Construction: The A and D matrices are compiled into the
Binary Quadratic Model (BQM), which is the input format for the
D-Wave system.

H= ZA,'J'X,'XJ' -« Z Diix;
iJ i
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QA Workflow: BQM and Embedding

o BQM Construction: The A and D matrices are compiled into the
Binary Quadratic Model (BQM), which is the input format for the
D-Wave system.

H= Z Ajjxixj — Z Diix;
i i
o Mapping Components:

» Linear terms (—aD;;) become biases on physical qubits.
» Quadratic terms (Aj) become weights on physical couplers.
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QA Workflow: BQM and Embedding

o BQM Construction: The A and D matrices are compiled into the
Binary Quadratic Model (BQM), which is the input format for the
D-Wave system.

H= Z Ajjxixj — Z Diix;
iJ i

o Mapping Components:
» Linear terms (—aD;;) become biases on physical qubits.
» Quadratic terms (Aj) become weights on physical couplers.

e Embedding (Minor Embedding): This is the crucial step where the
abstract BQM graph is mapped onto the fixed physical topology of
the Quantum Processing Unit (QPU).

» D-Wave's EmbeddingComposite often handles this automatic
placement and chaining of logical variables onto physical qubits.
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QA Execution and Solution

@ Sampling: Submit BQM to D-Wave with multiple reads.

@ Annealing: System evolves toward the ground state.

© Results: Returns bitstrings with associated energies.

@ Selection: Choose lowest-energy bitstring as optimal pathway.

© Mapping: Convert binary solution to gene IDs.

@ Validation: Analyze pathway properties (e.g., coverage, exclusivity).

["ASXL1"', 'BRINP3', 'DNMT3A']
coverage: 61.0

coverage/gene: 20.33

indep: 4.0

measure: 5.08

Example of a Discovered Cancer Gene Pathway
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Conclusion: Synthesis of Problems and Solvers

o QUBO as Interface: The Quadratic Unconstrained Binary
Optimization (QUBQO) model serves as the universal language for
expressing diverse NP-hard problems.
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o QUBO as Interface: The Quadratic Unconstrained Binary
Optimization (QUBQO) model serves as the universal language for
expressing diverse NP-hard problems.

@ Scope: We demonstrated QUBO formulation for both canonical (e.g.,
Number Partitioning) and practical (e.g., Cancer Genomics) problems.
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Conclusion: Synthesis of Problems and Solvers

o QUBO as Interface: The Quadratic Unconstrained Binary
Optimization (QUBQO) model serves as the universal language for
expressing diverse NP-hard problems.

@ Scope: We demonstrated QUBO formulation for both canonical (e.g.,
Number Partitioning) and practical (e.g., Cancer Genomics) problems.

o Algorithmic Synthesis: QUBO links classical and quantum solvers
by acting as the common input format:

Algorithm Platform Mechanism
Simulated Annealing (SA) | Classical Thermal Fluctuation
Quantum Annealing (QA) | Quantum Hardware | Quantum Tunneling
QAOA Hybrid/Gate Model | Parameterized Ansatz

Table: QUBO Solver Comparison
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Future Directions: Bridging the Gap

The field needs focused research to move quantum algorithms toward
practical advantage:

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 52 /52



Future Directions: Bridging the Gap

The field needs focused research to move quantum algorithms toward
practical advantage:

e Scaling & Decomposition: Developing techniques (e.g., circuit
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cutting) to partition large problems for limited NISQ hardware.

o Error Mitigation: Creating robust strategies to counteract high noise
and decoherence in current quantum processors.

e Hardware Optimization: Tailoring circuits to specific device
architectures for enhanced performance and reduced error rates.
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practical advantage:

e Scaling & Decomposition: Developing techniques (e.g., circuit
cutting) to partition large problems for limited NISQ hardware.

o Error Mitigation: Creating robust strategies to counteract high noise
and decoherence in current quantum processors.

e Hardware Optimization: Tailoring circuits to specific device
architectures for enhanced performance and reduced error rates.

o Algorithm Refinement: Further scaling and refining hybrid methods
(QAOA) and quantum machine learning models.
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Future Directions: Bridging the Gap

The field needs focused research to move quantum algorithms toward
practical advantage:
e Scaling & Decomposition: Developing techniques (e.g., circuit
cutting) to partition large problems for limited NISQ hardware.
o Error Mitigation: Creating robust strategies to counteract high noise
and decoherence in current quantum processors.

e Hardware Optimization: Tailoring circuits to specific device
architectures for enhanced performance and reduced error rates.

o Algorithm Refinement: Further scaling and refining hybrid methods
(QAOA) and quantum machine learning models.

@ Near-Term Solutions: Continued development of
Quantum-Inspired classical methods while fault-tolerant hardware
matures.
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