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Section 1

Quadratic Unconstrained Binary
Optimization

The QUBO Model
The Universal Language for Optimization



QUBO Model: Definition and Universality

Definition: Quadratic Unconstrained Binary Optimization (QUBO)
models problems in operations research, finance, and physics.

Mathematical Form: Minimize a quadratic function of binary
variables x ∈ {0, 1}n:

min
x∈{0,1}n

[xTQx+ c]

▶ Q is the QUBO matrix.
▶ The constant c is irrelevant to the optimal solution.

Expanded/Triangular Form: Since x2i = xi for binary variables:

min
xi∈{0,1}

∑
i<j

Qijxixj +
∑
i

Qiixi + c


Universality: QUBO provides a unified framework for representing
combinatorial optimization, including many NP-hard problems.
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Classical Approaches for QUBO

Exact Algorithms:

▶ Methods like branch-and-bound and semidefinite optimization are used,
but their runtime is limited by the NP-Hard nature of the problems.

Heuristic and Metaheuristic Algorithms:
▶ These general-purpose techniques are often applied to find high-quality,

near-optimal solutions quickly.
▶ Key Examples:

1 Simulated Annealing (SA): A metaheuristic that uses a
”temperature” to explore the solution space and escape local minima.

2 Genetic Algorithms.
3 Tabu Search.

▶ These methods offer competitive performance against specialized
algorithms in practice.
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The Quantum Landscape for QUBO

Quantum Relevance: QUBOs are mathematically equivalent to the
Ising Model, making them central to quantum optimization.

1. Quantum Annealing (QA):
▶ Method: Finds the global minimum by utilizing quantum fluctuations,

particularly suited for dedicated hardware (e.g., D-Wave).

2. Gate-Based Quantum Computing:
▶ Key Algorithm: Quantum Approximate Optimization Algorithm

(QAOA), a hybrid classical-quantum approach using quantum gates to
find approximate solutions.

3. Hybrid/Variational Quantum-Classical Heuristics:
▶ Methods that combine quantum subroutines with classical

optimization, such as Quantum-Assisted Genetic Algorithms (QAGA).

4. Quantum-Inspired Algorithms:
▶ Classical algorithms (like Quantum Particle Swarm Optimization) that

incorporate principles from quantum mechanics to enhance
performance without using quantum hardware.
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Section 2

Canonical QUBO Formulation

The Number Partitioning Problem
Balancing the Binary Partition



Canonical Problem: Number Partitioning (NP)

Problem Definition (NP-Hard): Given a set S of positive integers
{s1, s2, . . . , sn}, partition S into two subsets, A and S \ A.

Objective: Minimize the absolute difference (d) between the sum of
elements in A and the sum of elements in S \ A.

d =

∣∣∣∣∣∣
∑
si∈A

si −
∑

sj∈S\A

sj

∣∣∣∣∣∣
Goal: Make the sums of the two subsets as close as possible.

Modeling with Binary Variables

Decision Variable xi ∈ {0, 1}:
xi = 1 =⇒ si belongs to set A.

xi = 0 =⇒ si belongs to set S \ A.
Let c be the total sum of all elements in S .
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Number Partitioning QUBO

Sums of the Two Partitions:

Sum(A) =
n∑

i=1

sixi Sum(S \ A) = c −
n∑

i=1

sixi

The Difference (d): The difference d between these two sums:

d =

(∑
i

sixi

)
−

(
c −

∑
i

sixi

)
= 2

n∑
i=1

sixi − c

QUBO Objective: Since we want to minimize the absolute
difference |d |, the equivalent unconstrained binary optimization is to
minimize the square of the difference:

min
x∈{0,1}n

d2 =

(
2

n∑
i=1

sixi − c

)2
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Number Partitioning QUBO (continued)

Goal: Express the squared difference as the QUBO quadratic form,
min xTQx (ignoring the constant term c2 from expansion).(

2
n∑

i=1

sixi − c

)2

∝ xTQx

QUBO Matrix Coefficients (qij): The coefficients are derived from
the squared objective function, where Q is a symmetric matrix.

qij =

{
si(si − c) if i = j (Diagonal, linear term in xi )

2sisj if i ̸= j (Off-diagonal, quadratic term xixj)

Significance: This matrix Q is the input for all subsequent
algorithms (SA, QA, QAOA).
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Section 3

Practical QUBO Formulation

Cancer Genomics Pathways
Identifying Driver Mutations from TCGA Data



Practical Problem: Cancer Genomics (TCGA)

Goal: The de novo identification of altered cancer pathways from
gene mutation data (e.g., The Cancer Genome Atlas - TCGA).

Problem Type: This complex practical problem non-trivially reduces
to the Independent Set problem, meaning it is NP-Complete and a
suitable candidate for quantum optimization.

Data Modeling: Hypergraph
▶ Genes (gi ) are the vertices.
▶ Patients (Pj) are the hyperedges (groups of mutated genes).
▶ Modeled by the Incidence Matrix (B) where bij = 1 if gene i is

mutated in patient j .

Graph Laplacian: The gene-gene correlation matrix is derived:

L+ = BBT = D+ A
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Cancer Genomics: Criteria for Driver Genes

The Graph Laplacian is decomposed into two matrices corresponding
to two key combinatorial criteria for identifying ”driver” mutations:

1. Coverage (Maximize xTDx):
▶ We seek genes that are prevalent across a large patient cohort.
▶ Modeled by the Degree Matrix (D): A diagonal matrix where dii is

the number of patients affected by gene i .

2. Exclusivity (Minimize xTAx):
▶ Multiple mutations are unlikely in a single patient for the same pathway.
▶ Modeled by the Adjacency Matrix (A): aij is the number of patients

affected by both gene i and gene j .
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Cancer Genomics: The QUBO Formulation

Decision Vector x: xi = 1 if gene i in the pathway; xi = 0 otherwise.

Combined Objective: We must find a pathway that maximizes
coverage and minimizes exclusivity. This is formulated as:

min
x

[(Exclusivity Term)− α(Coverage Term)]

The Final QUBO Objective: minx
[
xTAx− αxTDx

]
Expanded QUBO Form: minx

[∑n
i=1

∑n
j=1 aijxixj − α

∑n
i=1 diixi

]
Penalty Factor α: The weight α ≥ 1 reflects that the coverage
criterion (the linear term) is more important than exclusivity.
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∑n
i=1 diixi

]
Penalty Factor α: The weight α ≥ 1 reflects that the coverage
criterion (the linear term) is more important than exclusivity.
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Section 4

Building Blocks of Quantum Computation

Circuits and the Ising Model
Bridging QUBO to Quantum Hardware



Qubits and Superposition

Qubits (Quantum Bits): The fundamental unit of quantum
information, analogous to a classical bit. They have two basis states,

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
.

Superposition: Unlike classical bits (restricted to 0 or 1), a qubit can
exist in a superposition of both states simultaneously:

|ψ⟩ = α|0⟩+ β|1⟩

α and β are complex probability amplitudes.

Born’s Rule: Measurement forces the qubit to collapse to a basis
state (|0⟩ or |1⟩) with probabilities:

P(0) = |α|2, P(1) = |β|2, where |α|2 + |β|2 = 1
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Visualizing Qubit States (Bloch Sphere)

Bloch Sphere: A geometrical representation of a pure single-qubit
state, where the surface represents all possible states.

The poles correspond to the computational basis states.

Any point on the surface is a superposition state |ψ⟩.

Figure: Bloch Sphere representations of |0⟩, |1⟩, and |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩
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Single-Qubit Gates

Quantum Gates: These are Unitary Operators (U) that act as
rotations and reflections on the single-qubit state vector.

Key Single-Qubit Gates:
▶ Hadamard (H): Creates a uniform superposition from a basis state. It

is crucial for initial state preparation.

H|0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩

▶ Pauli Gates (σX , σY , σZ ): Implement 180◦ rotations around the X ,Y ,
and Z axes on the Bloch sphere.

▶ Rotation Gates (RX (θ),RY (θ),RZ (θ)): Implement arbitrary
parameterized rotations around the axes.

⋆ These parameterized gates are the core components optimized by the
classical loop in Variational Quantum Algorithms (VQAs) like QAOA.
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Visualizing Single-Qubit Gates

Animations of key single-qubit gates acting on the Bloch sphere

Hadamard (H) Pauli-X (σX ) Rotation RX (π/2)

Naturally all gates are reversible (except measurement!).

Arul Rhik Mazumder, Sridhar Tayur (CMU) Five Starter Problems October 1, 2025 19 / 52



Multi-Qubit Gates

Multi-Qubit Gates: Operators that act on two or more qubits
simultaneously, creating correlations between them.

CNOT (CX): The fundamental gate for creating entanglement (a
non-classical correlation).

▶ The state of the target qubit is flipped only if the control qubit is |1⟩.
▶ Controlled-Z (CZ): Flips the phase of the target qubit only if the

control qubit is |1⟩.
QUBO Interaction Gate (RZZ (θ)):

▶ This gate applies a phase shift based on the correlation (or alignment)
of the two qubits’ Z-states.

▶ It is essential for implementing the Cost Hamiltonian in quantum
optimization algorithms, as it directly models the two-body interaction
terms (xixj) present in QUBOs.
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Quantum Circuits

Definition: A quantum circuit is a conceptual model representing a
sequence of quantum gates applied to an initial state of qubits.

Execution Order:
▶ Circuits are typically read and drawn left-to-right (time evolution).
▶ Mathematically, the corresponding unitary operators (Ui ) are multiplied

in the reverse order (right-to-left) due to matrix multiplication:

|ψout⟩ = ULUL−1 · · ·U1|ψin⟩

Tensor Product of States: When multiple quantum states (each in
different Hilbert spaces Hi ) or registers are combined, such as
|ψ1⟩ ∈ H1, |ψ2⟩ ∈ H2, ..., the joint system is described by:

|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ = |ψ1ψ2 · · ·ψn⟩ ∈ H1 ⊗H2 ⊗ · · · ⊗ Hn

|01⟩ = |0⟩ ⊗ |1⟩ =
(
1
0

)
⊗
(
0
1

)
=

1 ·
(
0
1

)
0 ·
(
0
1

)
 =


0
1
0
0


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Quantum Circuits Visualization

Consider the quantum expression:

[(CX) · (Z ⊗ Z ) · (X ⊗ H)] |00⟩

Step-by-step gate application (right-to-left):
1 Apply X to q[0] and H to q[1]
2 Then apply Z to both qubits
3 Finally apply a CX gate with control q[1] and target q[0]

This circuit transforms |00⟩ into a specific entangled state.

Figure: Quantum circuit represents: [(CX)× (Z ⊗ Z )× (X ⊗ H)]|00⟩.
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Hamiltonian and Quantum Evolution

The Hamiltonian (H):
▶ A Hermitian operator representing the energy of a quantum system.
▶ Its eigenvalues correspond to the possible energy levels of the system.
▶ The corresponding eigenvectors are the quantum states.

The Optimization Goal: We seek the lowest energy state, known as
the ground state, which corresponds to the optimal solution.

Time Evolution (Schrödinger Equation): The Hamiltonian governs
how a quantum state |ψ(t)⟩ changes over time:

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

Relevance to QA: This continuous time evolution is the basis for
Quantum Annealing (QA), where the system is slowly steered from a
known initial state to the problem’s ground state.
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Ising Model and QUBO

Ising Model: A mathematical tool from physics (ferromagnetism)
that models systems with interacting ”spins” (σi ∈ {−1, 1}).

Ising Hamiltonian (HIsing): The energy function is minimized when
solving the Ising problem:

H(σ) = −
∑
i<j

Jijσiσj −
∑
i

hiσi

▶ The first term represents two-body interactions (Jij).
▶ The second term represents external biases (hi ).

The Critical Link: QUBO-Ising Equivalence
▶ QUBO (binary variables xi ∈ {0, 1}) is directly convertible to the Ising

Model (spin variables σi ∈ {−1, 1}).
▶ The substitution is: xi =

1+σi

2 .
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Section 5

Optimization Landscape

Algorithms for QUBOs
Classical and Quantum Approaches to Optimization Problems



Algorithms: Simulated Annealing (SA) - Classical

Analogy: SA is a heuristic inspired by the physical process of
annealing (gradual cooling to reach a stable, low-energy state).

Goal: Find a high-quality heuristic solution (low-cost, or low-energy)
to an optimization problem, such as a QUBO.

Process Overview:
1 Map the target problem to a cost function f (x) (energy).
2 Initialize with a random solution x and a high temperature T .
3 Iteratively generate a neighboring solution x′ by applying small

perturbations.

Key Feature: Escaping Local Minima
▶ If the neighbor is better (∆E < 0), accept it deterministically.
▶ If the neighbor is worse (∆E > 0), accept it probabilistically. This

resistance to sticking to local minima is what sets SA apart.
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Simulated Annealing: Temperature Schedule and Cooling

Acceptance Probability: The likelihood of accepting a worse
solution x′ (∆E = f (x′)− f (x) > 0) is given by the formula derived
from thermal annealing:

paccept = exp

(
−∆E

T

)

Exploration vs. Exploitation:
▶ High T (Start): paccept is high. The algorithm explores widely,

accepting many worse moves.
▶ Low T (End): paccept is low. The algorithm mostly accepts better

moves, exploiting the best solution found so far.

Cooling Process: T is gradually reduced at each step using a
cooling factor α (0 < α < 1): Tnew = α · Told

Trade-offs:
▶ Advantage: Simple and effective at escaping local minima.
▶ Limitation: Performance is highly dependent on careful tuning of

parameters (initial T , α, iterations per temperature).
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Simulated Annealing Visualization
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Algorithms: Quantum Annealing (QA) - Quantum

Type: A example of Adiabatic Quantum Computing (AQC).

Goal: Find the ground state of a system, which corresponds to the
optimal solution of a QUBO/Ising problem.

Mechanism: Leverages Adiabatic Theorem and Quantum Tunneling.

Hardware: Highly specialized for optimization (D-Wave QPUs).

QA vs. SA: The Quantum Advantage

Simulated Annealing (SA) must climb energy barriers.

QA uses quantum tunneling to bypass energy barriers, potentially
reaching the global optimum more efficiently.

Mapping the Problem

The QUBO problem xTQx is mapped to the equivalent Ising
Hamiltonian HC , where the variables are quantum spins σi ∈ {−1, 1}.
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Quantum Annealing: The Adiabatic Theorem

Core Principle: A quantum system initially in the ground state of a
time-dependent Hamiltonian H(t) will remain in its instantaneous
ground state throughout the evolution, provided the evolution is
sufficiently slow (adiabaticity).

Time-Dependent Hamiltonian: The process is governed by two
combined Hamiltonians:

H(s(t)) = (1− s(t))HD + s(t)HC

▶ s(t) ∈ [0, 1] is the monotonic scheduling function.
▶ At t = 0 (s = 0), H = HD .
▶ At t = T (s = 1), H = HC .

Driver Hamiltonian (HD): A simple Hamiltonian whose ground
state is easy to prepare (usually uniform superposition):

HD = −
∑
i

σ
(i)
x

Cost Hamiltonian (HC ): Encodes the optimization problem.
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Quantum Annealing: Spectral Gap and Speed

The Spectral Gap (∆(s)): The energy difference of the ground
state (E0) and first excited state (E1) of the Hamiltonian H(s).

∆(s) = E1(s)− E0(s)

Minimum Gap (∆min): The min gap over the entire annealing path.
▶ The minimum gap often occurs where the problem is hardest (a

”quantum critical point”).

Adiabatic Condition: To ensure the system remains in the ground
state (and thus finds the optimal solution), the total annealing time
T must be long enough:

T ≫ 1

∆2
min

Implication: A smaller min gap requires a much longer annealing
time T to avoid exciting the system into a non-optimal state.
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Quantum Annealing: Workflow (D-Wave Example)

Initial State (s = 0): The Hamiltonian is dominated by HD (Pauli-X
terms), forcing all qubits into a uniform superposition.

Annealing Process (0 < s < 1): The coefficients A(s) (Driver)
decrease and B(s) (Cost) increase. The energy landscape gradually
deforms from a simple, flat landscape to the complex, spiked
landscape defined by HC .

The HIsing Combination:

HIsing = −A(s)

2

∑
i

σ
(i)
X︸ ︷︷ ︸

Initial Driver Hamiltonian

+
B(s)

2

∑
i

hiσ
(i)
Z +

∑
i<j

Jijσ
(i)
Z σ

(j)
Z


︸ ︷︷ ︸

Final Cost Hamiltonian

Final State (s = 1): The Hamiltonian is dominated by HC (Pauli-Z
terms). The qubits collapse to the configuration that minimizes this
energy, yielding the optimal QUBO solution.
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Quantum Annealing Visualization
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Algorithms: Quantum Approximate Optimization
Algorithm (QAOA) - Quantum

Type: A Quantum-Classical Hybrid Algorithm designed for
combinatorial optimization problems (e.g., QUBOs).

NISQ Era Algorithm: It has a relatively low circuit depth, making it
more resilient to decoherence on current Noisy Intermediate-Scale
Quantum (NISQ) devices.

Motivation: Discretizing Quantum Annealing (QA)
▶ QA relies on continuous-time evolution, which isn’t natively digital.
▶ QAOA uses Trotterization to simulate this continuous evolution using

alternating, repeated gate sequences (ansatz).

Workflow: A quantum circuit generates a state, and a optimizer
tunes the circuit’s parameters to minimize the expected cost.
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QAOA: The Parametrized Quantum Circuit

Initial State Preparation: The circuit begins by applying a
Hadamard gate (H) to all n qubits, creating a uniform superposition
of all 2n possible solutions:

|ψ(0)⟩ = |+⟩⊗n

Alternating Operators: The core consists of p repeated layers of
operators derived from the Hamiltonians used in Quantum Annealing:

1 Cost Operator (e−iγHC ): Encodes the objective function.
2 Mixer Operator (e−iβHD ): Explores the solution space.

The Ansatz (U): The quantum state after p layers is:

|ψ(β⃗, γ⃗)⟩ =
p∏

i=1

e−iβiHDe−iγiHC |ψ(0)⟩

Parameterized by 2p angles: β⃗ = {β1, . . . , βp} and γ⃗ = {γ1, . . . , γp}.
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QAOA: Cost Hamiltonian (HC ) - (Problem Encoding)

Purpose: The Cost Hamiltonian (HC ) encodes the QUBO problem
(the objective function) into the quantum system’s energy landscape.

Structure: It uses Pauli-Z operators (σZ ), as the computational basis
states |0⟩, |1⟩ are eigenstates of σZ .

HC =
∑
i

hiσ
(i)
Z +

∑
i<j

Jijσ
(i)
Z σ

(j)
Z

Coefficients: The hi and Jij terms are derived directly from the linear
and quadratic coefficients of the QUBO matrix Q.

Cost Operator (e−iγHC ): This unitary operator applies the phase
encoding the cost, parameterized by γ.

Implementation: It is approximated (via Trotterization) using a
series of single-qubit Z-rotations and two-qubit UZZ gates:

e−iγHC ≈
∏
i<j

e−iγJijσ
(i)
Z σ

(j)
Z

∏
i
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(i)
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QAOA: Mixer Hamiltonian (HD) - Exploration

Purpose: The Mixer Hamiltonian (HD) drives the exploration of the
solution space, preventing from getting trapped in local minima.

Structure: It’s typically a sum of single-qubit Pauli-X operators
(σX ), which cause transitions between |0⟩ and |1⟩:

HD = −
∑
i

σ
(i)
X

Mixer Operator: The parameterized unitary operator that executes
the mixing step: e−iβHD .

Implementation: The operator is implemented using single-qubit
Rotation Gates around the X-axis (RX ):

e−iβHD ≈
∏
i

e−iβσ
(i)
X

Parameters: The β angles are part of the 2p total parameters
optimized by the classical algorithm.
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QAOA: The Hybrid Optimization Loop

1 Quantum Execution:
▶ The circuit |ψ(β⃗, γ⃗)⟩ is executed on a quantum computer.
▶ Measure the state to estimate ⟨ψ|HC |ψ⟩, indicating solution quality.

2 Classical Optimization:
▶ A classical optimizer (e.g., gradient descent or heuristic methods)

receives the estimated expected value.
▶ The optimizer adjusts the 2p parameters (β⃗, γ⃗) to minimize this

expected cost.

3 Iteration: Steps 1 and 2 are repeated until the parameters converge.

4 Output: The final, optimized quantum state is measured to obtain
the approximate binary solution to the QUBO problem.
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QAOA Visualization

|0⟩ H

e−iγ1HC

RX (β1)

e−iγ2HC

RX (β2)

|0⟩ H RX (β1) RX (β2)

|0⟩ H RX (β1) RX (β2)

Calculate expected
objective value

Update variational parameters
{γi , βi} with optimizer

Figure: QAOA Circuit: Each layer alternates between a problem-specific cost
unitary e−iγHC and a mixing unitary RX (β). The parameters (γ1, β1), (γ2, β2) are
optimized classically.
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Section 6

Implementation and Workflow

Solving QUBOs in Code
From QUBO Matrix to Algorithm Output



Vanilla QAOA: Framework and Input

Framework: Vanilla QAOA utilizes a standard quantum-classical
hybrid approach (e.g., using Qiskit) for solving QUBOs.

Input: The optimization problem must first be converted into the
QUBO form, providing the:

▶ Quadratic coefficients (Qij).
▶ Linear coefficients (ci ).

Parameters: The circuit’s performance depends on 2p tunable
angles: γ⃗ (Cost) and β⃗ (Mixer). These are determined by the
optimizer.
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Vanilla QAOA: Cost Operator (HC ) Implementation

Goal: Encode the QUBO objective function into the Cost
Hamiltonian (HC ) in the Pauli-Z basis (σZi ).

Mapping HC (Pauli-Z basis):

HC =
∑
i ,j

1

4
Qijσ

Z
i σ

Z
j −

∑
i

1

2

ci +
∑
j

Qij

σZi

Cost Operator (e−iγHC ): This unitary applies the cost function’s
phase to the quantum state, parameterized by γ.

Implementation: The operator is constructed using standard
quantum gates:

▶ Single-qubit RZ gates (to handle the linear σZ
i terms).

▶ Two-qubit RZZ gates (to handle the quadratic σZ
i σ

Z
j terms).

The rotation angles are directly proportional to the γ parameter and
the respective QUBO coefficients.
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Vanilla QAOA: Mixer Operator (HM) Implementation

Goal: Implement the Mixer Operator (e−iβHM ) to induce transitions
between basis states, enabling exploration.

Mixer Hamiltonian (HM): It is defined as a sum of Pauli-X
operators:

HM = −
n∑

i=1

σ
(i)
X

Implementation Strategy: The operator is implemented using
simple single-qubit rotations.

Gate Used: Single-qubit Rotation Gates around the X-axis (RX ).

The Operator:

e−iβHM =
n∏

i=1

RX (2β)

Parameters: The β angle is one of the 2p parameters (γ⃗, β⃗) forming
the parameter vector that is optimized by the classical algorithm.
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Vanilla QAOA: Circuit Construction

Initialization: Apply Hadamards (H) to all n qubits to create a
uniform superposition (|ψ(0)⟩).

Ansatz Layering (p-depth): The core quantum circuit repeats an
alternating sequence of parameterized operators p times:

|ψ(β⃗, γ⃗)⟩ =
p∏

k=1

(
e−iγkHC e−iβkHM

)
|ψ(0)⟩

Hybrid Core: This sequence is the ansatz, parameterized by 2p
angles, β⃗ (Mixer) and γ⃗ (Cost).

Qiskit Circuit (Example for p = 1)
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Vanilla QAOA: Hybrid Optimization Workflow

Quantum Step: Measure final state (e.g., 1000 shots) to estimate
expected cost ⟨ψ|HC |ψ⟩.

Classical Step: Optimizer (e.g., COBYLA) updates parameters
(γ⃗, β⃗) to minimize cost.

Result: Final sampling yields bitstring probabilities.

Solution: Most frequent bitstring → approximate optimum.

Workflow Summary

QAOA alternates between quantum measurements (to evaluate cost) and
classical optimization (to improve parameters).
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Workflow Summary

QAOA alternates between quantum measurements (to evaluate cost) and
classical optimization (to improve parameters).
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Vanilla QAOA: Result Example

Interpreting the Output

Most probable bitstring (e.g., 0010) ⇒ Partition {1, 5, 5} vs. {11} in the
number partitioning problem.
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Quantum Annealing for Cancer Genomics

Platform: Uses Quantum Annealers (e.g., D-Wave), which provide
thousands of qubits to tackle larger, real-world QUBO instances.

Application: The Cancer Genomics pathway identification problem.

QUBO Objective Recap: The goal is to minimize exclusivity (A)
while maximizing coverage (D):

min
x

[
xTAx− αxTDx

]
Data Preprocessing: Requires significant effort to construct the
QUBO coefficients from raw biological data (e.g., patient mutation
lists from TCGA).

Input Data

Mutation data is sourced from databases like cBioPortal (TCGA AML
study) to establish a Patient-Gene dictionary.
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QA Preprocessing: Constructing D and A

1. Degree Matrix (D): Defines the linear terms (xTDx).
▶ Role: Measures Coverage (gene prevalence across patients).
▶ Construction: D is diagonal; Dii equals the number of patients

affected by gene i .

2. Adjacency Matrix (A): Defines the quadratic terms (xTAx).
▶ Role: Measures Exclusivity (gene-pair co-occurrence).
▶ Construction: Aij is the number of patients mutated by both gene i

and gene j . Requires iterating over all gene pairs for each patient.

Figure 15: Sample of Patient-Gene Dictionary (Mapping patients to mutated
gene lists)
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QA Workflow: BQM and Embedding

BQM Construction: The A and D matrices are compiled into the
Binary Quadratic Model (BQM), which is the input format for the
D-Wave system.

H =
∑
i ,j

Aijxixj − α
∑
i

Diixi

Mapping Components:
▶ Linear terms (−αDii ) become biases on physical qubits.
▶ Quadratic terms (Aij) become weights on physical couplers.

Embedding (Minor Embedding): This is the crucial step where the
abstract BQM graph is mapped onto the fixed physical topology of
the Quantum Processing Unit (QPU).

▶ D-Wave’s EmbeddingComposite often handles this automatic
placement and chaining of logical variables onto physical qubits.
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QA Execution and Solution

1 Sampling: Submit BQM to D-Wave with multiple reads.
2 Annealing: System evolves toward the ground state.
3 Results: Returns bitstrings with associated energies.
4 Selection: Choose lowest-energy bitstring as optimal pathway.
5 Mapping: Convert binary solution to gene IDs.
6 Validation: Analyze pathway properties (e.g., coverage, exclusivity).

Example of a Discovered Cancer Gene Pathway
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Conclusion: Synthesis of Problems and Solvers

QUBO as Interface: The Quadratic Unconstrained Binary
Optimization (QUBO) model serves as the universal language for
expressing diverse NP-hard problems.

Scope: We demonstrated QUBO formulation for both canonical (e.g.,
Number Partitioning) and practical (e.g., Cancer Genomics) problems.

Algorithmic Synthesis: QUBO links classical and quantum solvers
by acting as the common input format:

Algorithm Platform Mechanism
Simulated Annealing (SA) Classical Thermal Fluctuation

Quantum Annealing (QA) Quantum Hardware Quantum Tunneling

QAOA Hybrid/Gate Model Parameterized Ansatz

Table: QUBO Solver Comparison
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Future Directions: Bridging the Gap

The field needs focused research to move quantum algorithms toward
practical advantage:

Scaling & Decomposition: Developing techniques (e.g., circuit
cutting) to partition large problems for limited NISQ hardware.

Error Mitigation: Creating robust strategies to counteract high noise
and decoherence in current quantum processors.

Hardware Optimization: Tailoring circuits to specific device
architectures for enhanced performance and reduced error rates.

Algorithm Refinement: Further scaling and refining hybrid methods
(QAOA) and quantum machine learning models.

Near-Term Solutions: Continued development of
Quantum-Inspired classical methods while fault-tolerant hardware
matures.
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