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Background: The Low Autocorrelation Binary Sequence

(LABS) Problem

Objective: Minimize energy E(x) for x € {—1,+1}V

N—1 /N—k 2
E(X) = Z < X,'X,'+k>
-1

k=1 i
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Current Algorithmic Landscape:

Method Complexity Key Constraint
Memetic Tabu Search (MTS)  O(1.37V) Current SOTA
QAOA (Standard) [1] O(1.46") O(1.21") requires non-NISQ

Adiabatic and QE-MTS [2] O(1.24") Trotter depth / High precision
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QAOA (Standard) [1] O(1.46") O(1.21") requires non-NISQ

Adiabatic and QE-MTS [2] O(1.24") Trotter depth / High precision

The Research Challenge

To demonstrate heuristic advantage, we must develop a scalable,
shallow-depth algorithm that outperforms the classical benchmark.

T mid = = et
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Preview of our Results

Merit Factor vs N
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Figure: Merit Factor (MF) scaling across sequence sizes N. High MF indicates
superior ground-state approximation for the LABS problem.
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Our Approach

We use Pauli Correlation Encoding (PCE) [3] to seed MTS.
Here is the PCE workflow:
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|W(0)) = U(6)|0)®" with random 6.
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Our Approach

We use Pauli Correlation Encoding (PCE) [3] to seed MTS.
Here is the PCE workflow:
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Initialization: With n-qubit ansatz U(6) (n < N) and prepare state
|W(0)) = U(6)|0)®" with random 6.

Measurement: Extract Pauli expectations (I1;) for {I1;};=1. n-
Relaxation: Map correlations to smooth variables: X; = tanh(«(I1;)).

Optimization: Update # by minimizing the relaxed LABS loss:

Decoding: Upon convergence, use final expectations to assign the
binary sequence: x; = sign(([1;)).
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Why PCE? Advantages for NISQ and Beyond

Variational approaches encode problems directly, while PCE maps variables
to expectations of observables.

@ Compression: n qubits yield 4" — 1 Pauli observables. While

practical sets (e.g., anti-commuting) are larger to minimize bias, PCE
still provides polynomial qubit reduction.
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Why PCE? Advantages for NISQ and Beyond

Variational approaches encode problems directly, while PCE maps variables
to expectations of observables.

@ Compression: n qubits yield 4" — 1 Pauli observables. While
practical sets (e.g., anti-commuting) are larger to minimize bias, PCE
still provides polynomial qubit reduction.

o Resource Scaling:

o Qubits: O(y/n) vs. O(n) for standard binary encodings.
o Depth: O(y/n) vs. O(n) (following QAOA-like depth scaling) [4].

o Barren Plateau Mitigation: Gradient variance is suppressed at
e~ 9" rather than e=9("), significantly improving trainability [5].

It is a NISQ-friendly and scalable scheme, and PCE for the LABS

problem demonstrates a runtime scaling of ~ O(1.31"), making it
competitive with the best classical heuristics [3].
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Methodology and Benchmarking

Algorithm Selection
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Methodology and Benchmarking

Algorithm Selection
o Primary Benchmark: PCE-MTS vs. standalone MTS.

o Excluded Baselines: QAOA and Trotterized methods were omitted
due to qubit volume and depth requirements.
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Methodology and Benchmarking

Algorithm Selection
o Primary Benchmark: PCE-MTS vs. standalone MTS.

o Excluded Baselines: QAOA and Trotterized methods were omitted
due to qubit volume and depth requirements.

Performance Metric: Merit Factor (MF): We evaluate performance

based on the best MF achieved within a fixed budget of 25,000 or
250, 000 loss function calls:

N2

MF = —
2E
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Methodology and Benchmarking

Algorithm Selection
o Primary Benchmark: PCE-MTS vs. standalone MTS.
o Excluded Baselines: QAOA and Trotterized methods were omitted
due to qubit volume and depth requirements.

Performance Metric: Merit Factor (MF): We evaluate performance
based on the best MF achieved within a fixed budget of 25,000 or
250, 000 loss function calls:
N2
MF = —
2E

Verification and Scaling

e Validation: MTS implementation verified against known optimal MF
values up to N = 82. Each MTS was seeded and run 10 times.

o Comparison: Benchmarked PCE-MTS vs. MTS to identify where
quantum seeding accelerates convergence toward global optima.
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Benchmarking Results: Merit Factor vs. N

Merit Factor (higher is better)
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16.72% Improvement for 25k vs 25k LFCs

Merit Factor vs N
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5.86% Improvement for 25k vs 25

Merit Factor vs N
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PCE Phase: Optimization of (Hyper)parameters

@ Hyperparameter tuning: Expectations probed via anti-commuting Pauli
strings [3].
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@ Parameter optimization: Classical COBYLA vs. Quantum-inspired
EGT-CG Simultaneous Perturbation Stochastic Approximation (SPSA).
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PCE Phase: Optimization of (Hyper)parameters

@ Hyperparameter tuning: Expectations probed via anti-commuting Pauli
strings [3].

@ Parameter optimization: Classical COBYLA vs. Quantum-inspired
EGT-CG Simultaneous Perturbation Stochastic Approximation (SPSA).

The EGT-CG Approach

Optimizes on the Fubini-Study
metric/QGT of the quantum parameter
space [6]:

@ Scalability: Reduces loss function calls
for large sequences (N = 50).

@ Stability: Suppresses barren plateaus
via conjugate gradient (CG) method.

@ Efficiency: Facilitates global
convergence and warm-state starts.
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PCE Phase: Optimization of (Hyper)parameters

@ Hyperparameter tuning: Expectations probed via anti-commuting Pauli
strings [3].

@ Parameter optimization: Classical COBYLA vs. Quantum-inspired
EGT-CG Simultaneous Perturbation Stochastic Approximation (SPSA).

The EGT-CG Approach Benchmark (vs. COBYLA)

Optimizes on the Fubini-Study Metric Outcome

metric/QGT of the quantum parameter Accuracy Equivalent

space [6]: Cost 2x Func. Calls
@ Scalability: Reduces loss function calls Latency +30%

for large sequences (N = 50).

@ Stability: Suppresses barren plateaus
via conjugate gradient (CG) method.

@ Efficiency: Facilitates global
convergence and warm-state starts.
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PCE Phase: Optimization of (Hyper)parameters

@ Hyperparameter tuning: Expectations probed via anti-commuting Pauli
strings [3].

@ Parameter optimization: Classical COBYLA vs. Quantum-inspired
EGT-CG Simultaneous Perturbation Stochastic Approximation (SPSA).

The EGT-CG Approach Benchmark (vs. COBYLA)

Optimizes on the Fubini-Study Metric Outcome

metric/QGT of the quantum parameter Accuracy Equivalent

space [6]: Cost 2x Func. Calls
@ Scalability: Reduces loss function calls Latency +30%

for large sequences (N = 50).
Future improvement: could we tweak

@ Stability: Suppresses barren plateaus | ;4. encoding to better leverage

via conjugate gradient (CG) method. quantum geometry?

@ Efficiency: Facilitates global
convergence and warm-state starts.
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GPU Acceleration: CUDA-Q & CuPy Integration

Runtime for 3 objective calls (s)

PCE-MTS Solver: GPU vs CPU Performance

Runtime Comparison
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GPU Acceleration: CUDA-Q & CuPy Integration

PCE-MTS Solver: GPU vs CPU Performance
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Figure: PCE-MTS Solver: GPU vs CPU Performance

End-to-End GPU Residency: Statevectors (CUDA-Q) and MTS
populations (CuPy) remain in GPU memory
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Figure: PCE-MTS Solver: GPU vs CPU Performance

e End-to-End GPU Residency: Statevectors (CUDA-Q) and MTS
populations (CuPy) remain in GPU memory

o Massive Parallelization: Parallelizes parameter-shift gradients and
energy evaluations via vectorized kernels and batched observables.
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