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Background: The Low Autocorrelation Binary Sequence
(LABS) Problem

Objective: Minimize energy E (x) for x ∈ {−1,+1}N

E (x) =
N−1∑
k=1

(
N−k∑
i=1

xixi+k

)2

Current Algorithmic Landscape:

Method Complexity Key Constraint
Memetic Tabu Search (MTS) O(1.37N) Current SOTA
QAOA (Standard) [1] O(1.46N) O(1.21N) requires non-NISQ
Adiabatic and QE-MTS [2] O(1.24N) Trotter depth / High precision

The Research Challenge

To demonstrate heuristic advantage, we must develop a scalable,
shallow-depth algorithm that outperforms the classical benchmark.
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Preview of our Results

Figure: Merit Factor (MF) scaling across sequence sizes N. High MF indicates
superior ground-state approximation for the LABS problem.
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Our Approach

We use Pauli Correlation Encoding (PCE) [3] to seed MTS.
Here is the PCE workflow:

leftm1rg1n=*, 1temsep=1pt, topsep=4ptInitialization: With n-qubit ansatz U(θ) (n ≪ N) and prepare state
|Ψ(θ)⟩ = U(θ)|0⟩⊗n with random θ.

leftm2rg2n=*, 2temsep=2pt, topsep=4ptMeasurement: Extract Pauli expectations ⟨Πi ⟩ for {Πi}i=1...N .

leftm3rg3n=*, 3temsep=3pt, topsep=4ptRelaxation: Map correlations to smooth variables: x̃i = tanh(α⟨Πi ⟩).
leftm4rg4n=*, 4temsep=4pt, topsep=4ptOptimization: Update θ by minimizing the relaxed LABS loss:

L(θ) =
N−1∑
ℓ=1

(
N−ℓ∑
i=1

x̃i x̃i+ℓ

)2

− β
N∑
i=1

x̃2i

leftm5rg5n=*, 5temsep=5pt, topsep=4ptDecoding: Upon convergence, use final expectations to assign the
binary sequence: xi = sign(⟨Πi ⟩).
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Why PCE? Advantages for NISQ and Beyond

Variational approaches encode problems directly, while PCE maps variables
to expectations of observables.

Compression: n qubits yield 4n − 1 Pauli observables. While
practical sets (e.g., anti-commuting) are larger to minimize bias, PCE
still provides polynomial qubit reduction.

Resource Scaling:
Qubits: O(

√
n) vs. O(n) for standard binary encodings.

Depth: O(
√
n) vs. O(n) (following QAOA-like depth scaling) [4].

Barren Plateau Mitigation: Gradient variance is suppressed at
e−O(

√
n) rather than e−O(n), significantly improving trainability [5].

It is a NISQ-friendly and scalable scheme, and PCE for the LABS
problem demonstrates a runtime scaling of ≈ O(1.31n), making it
competitive with the best classical heuristics [3].
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Methodology and Benchmarking

Algorithm Selection

Primary Benchmark: PCE-MTS vs. standalone MTS.

Excluded Baselines: QAOA and Trotterized methods were omitted
due to qubit volume and depth requirements.

Performance Metric: Merit Factor (MF): We evaluate performance
based on the best MF achieved within a fixed budget of 25, 000 or
250, 000 loss function calls:

MF =
N2

2E

Verification and Scaling

Validation: MTS implementation verified against known optimal MF
values up to N = 82. Each MTS was seeded and run 10 times.

Comparison: Benchmarked PCE-MTS vs. MTS to identify where
quantum seeding accelerates convergence toward global optima.
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Benchmarking Results: Merit Factor vs. N
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16.72% Improvement for 25k vs 25k LFCs
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5.86% Improvement for 25k vs 250k LFCs
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PCE Phase: Optimization of (Hyper)parameters

Hyperparameter tuning: Expectations probed via anti-commuting Pauli
strings [3].

Parameter optimization: Classical COBYLA vs. Quantum-inspired
EGT-CG Simultaneous Perturbation Stochastic Approximation (SPSA).

The EGT-CG Approach

Optimizes on the Fubini-Study
metric/QGT of the quantum parameter
space [6]:

Scalability: Reduces loss function calls
for large sequences (N ≈ 50).

Stability: Suppresses barren plateaus
via conjugate gradient (CG) method.

Efficiency: Facilitates global
convergence and warm-state starts.

Benchmark (vs. COBYLA)

Metric Outcome
Accuracy Equivalent
Cost 2× Func. Calls
Latency +30%

Future improvement: could we tweak

the encoding to better leverage

quantum geometry?
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GPU Acceleration: CUDA-Q & CuPy Integration

Figure: PCE-MTS Solver: GPU vs CPU Performance

End-to-End GPU Residency: Statevectors (CUDA-Q) and MTS
populations (CuPy) remain in GPU memory

Massive Parallelization: Parallelizes parameter-shift gradients and
energy evaluations via vectorized kernels and batched observables.
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