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Introduction. A growing body of work explores an early fault-tolerant regime where one wishes
to run an algorithm of real-world relevance on a qubit and depth-constrained quantum computer
[Cam21; LT20; LT22; WBC22; Wan+23; Wan+25; WMB24; Kis+25]. Here, the motivation is
not necessarily to achieve optimal algorithmic complexity overall; but instead to minimize the
complexity of individual quantum circuit runs, in terms of quantum gate depth and number of qubits.
We note that whilst nominally these algorithms are conceived to be run on error-corrected quantum
computers, there is no a priori reason why they also cannot be run on noisy hardware with error
mitigation [Blu+23].

Within the realm of quantum simulation, product formulae are already very amenable to running
on current hardware and small-scale have been a mainstay of quantum computing experiments for
many years. In addition to their conceptual and practical simplicity which allows this, Product
formulae exhibit commutator scaling [Chi+21] which other (otherwise asymptotically superior)
methods do not. We seek algorithms outside of dynamics which can incorporate the useful properties
of product formulae, whilst simultaneously maintaining good asymptotic runtime guarantees and
being amenable to running on early fault tolerant quantum computers.

Result 1: algorithm framework. In our work we present a matrix processing algorithm framework
which can return the following quantities

estimate Tr[p f(H)] and Tr[ f (H)p f(H)" O] to additive precision &, (1)

return ¥ such that ||V — j|» < & for p; = | (i| f(H) |w) |*. (2)

The quantum circuits that need to be run are very simple; we simply run Hadamard tests on product
formulae unitaries corresponding to different time steps and total evolution times.

Instructive to understand our algorithm is to investigate the compilation of a time signal of the
form tr[pe’T]. We consider the matrix to be expressed as the sum of I' terms as H = 2521 H,
such that time evolution of each H,, is available in O(1) time. It will be useful to reference the
1-norm of H which we denote as I' := Zgzl |[H,]|. Our analysis applies to any general staged

product formula P(¢), and we say that a formula is pth-order if it satisfies P (¢) = /' + O (tP*).
To simplify presentation we presume the number of stages is fixed. For instance, we can consider
Trotter-Suzuki formulas of some fixed order p. We present a complexity comparison in Table 1.
We see that product formulae are unique that their dependence on matrix parameters consists
of a quantity (aéﬁf{lg /P 1t is known that (aéﬁf{lg /P << A in many settings [Chi+21]. However,
product formula have substantially worse dependence on the error parameter than all other settings.
Qubitization instantiates time evolution in optimal circuit depth in the time parameter, but it is costly
to implement in practice and requires substantially more ancillary qubits than other approaches.
Our gate complexities exponentially improve the error dependence of product formulae, at very
modest increase in sample overhead. The complexities depend on a new quantity Acomm Which
is a set of nested commutators which also appears in the algorithmic complexity of [WW24a;



Cha+25], and its explicit form is presented in our technical manuscript. Previously, its behavior was
understood only in limited regimes. In particular, it is divergent when using best known bounds for
k-local systems.

Result 2: refined gate complexities and commutator scaling. Our second contribution is to
demonstrate refined gate complexities in a number of settings that exploit commutator scaling. These
were all previously unknown for extrapolated product formulae circuits or not explicitly instantiated.
We give results for

k-local systems, subsuming with it models of power-law interactions.

* Scenarios where commutator scaling for standard product formula is only understood for a
fixed order. Previous studies could only exploit commutator scaling when scaling is understood
at every order.

Interpolation of our scaling with randomized formula, exploiting the ideas of [Giin+25], which
can be particularly advantageous for matrix ensembles with long tails.

Settings where the input state is of well-defined Fermion number.

To showcase our refined gate complexities along with an application of our general framework
in one go, we present complexity of our approach for a ground state energy estimation task in Table
2. Here our goal is to find the ground state energy of H, given efficient preparation of an ansatz state
o with overlap with the ground space 7 := tr[pIly], where I1y denotes the projector to the ground
space of H. We see here that commutator scaling is highly advantageous, and we inherit this scaling
with a minor logarithmic overhead. Moreover, we exponentially improve the dependence on the gate
complexity on ! compared to the approach with vanilla Trotter formulae.
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Table 1: Complexity comparison for the task of approximating a time signal tr[pe’fT] via a Hadamard

test given efficient preparation of p. In order to allow comparison with the random compiler of [WBC22]
we have assumed that the Hamiltonian is given as a linear combination of I" Pauli matrices. The quantity

1 .
aPtl) < 1(2A)P*! is a sum of nested commutators.
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Table 2: Phase estimation complexity comparisonm k-local systems. For Hamiltonian H = 25:1 he,
A= 2521 llhell, 7 = tr[pIlp] the initial state overlap, defined in Lemma . We have assumed constant order p
and constant per-site energy.

Comparison to prior art. Extrapolation was first introduced in [WW24b] for application to
estimation time-evolved observables. Recent work [Cha+25] considers a general framework which
can also instantiate Task | with the same gate complexity as ours. However, we give a full exposition
of this problem in the matrix function picture in our work for completeness. Our innovation beyond
prior art is two fold: first, we use randomization to give refined sample overheads that only incur
polylog-logarithmic multiplicative overhead, and allows a novel task as defined in Task 2. Second,
we provide novel understanding of commutator scaling in extrapolated circuits which applies also
settings considered in prior art — this opens up gate complexities with commutator scaling for k-local
systems and alternative refined scalings.

References

[Blu+23]  Nick S Blunt, Laura Caune, Rébert 1zsdk, Earl T Campbell, and Nicole Holzmann.
“Statistical phase estimation and error mitigation on a superconducting quantum
processor”. In: PRX Quantum 4.4 (2023). arXiv:2304.05126, p. 040341.

[Cam21]  Earl T Campbell. “Early fault-tolerant simulations of the Hubbard model”. In: Quantum
Science and Technology 7.1 (2021). arXiv:2012.09238, p. 015007.

[Cha+25] Shantanav Chakraborty, Soumyabrata Hazra, Tongyang Li, Changpeng Shao, Xinzhao
Wang, and Yuxin Zhang. “Quantum singular value transformation without block
encodings: Near-optimal complexity with minimal ancilla”. arXiv:2504.02385. 2025.

[Chi+21]  Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and Shuchen Zhu. “Theory
of Trotter Error with Commutator Scaling”. In: Phys. Rev. X 11.1 (Feb. 2021).
arXiv:1912.08854.


https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.4.040341
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.4.040341
https://arxiv.org/abs/2304.05126
https://dx.doi.org/10.1088/2058-9565/ac3110
https://arxiv.org/abs/2012.09238
https://arxiv.org/abs/2504.02385
https://dx.doi.org/10.1103/physrevx.11.011020
https://dx.doi.org/10.1103/physrevx.11.011020
https://arxiv.org/abs/1912.08854

[DLT22]

[Giin+25]

[Kis+25]

[LC17]

[LC19]

[LT20]

[LT22]

[Wan+23]

[Wan+25]

[WBC22]

[WMB24]

[WW24a]

[WW24b]

Yulong Dong, Lin Lin, and Yu Tong. “Ground-state preparation and energy estimation
on early fault-tolerant quantum computers via quantum eigenvalue transformation of
unitary matrices”. In: PRX Quantum 3.4 (2022). arXiv:2204.05955, p. 040305.

Jakob Giinther, Freek Witteveen, Alexander Schmidhuber, Marek Miller, Matthias
Christandl, and Aram Harrow. ‘“Phase estimation with partially randomized time
evolution”. arXiv:2503.05647. 2025.

Oriel Kiss, Utkarsh Azad, Borja Requena, Alessandro Roggero, David Wakeham, and
Juan Miguel Arrazola. “Early fault-tolerant quantum algorithms in practice: Application
to ground-state energy estimation”. In: Quantum 9 (2025). arXiv:2405.03754, p. 1682.

Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by Quantum
Signal Processing”. In: Phys. Rev. Lett. 118.1 (2017). arXiv:1606.02685, p. 010501.

Guang Hao Low and Isaac L. Chuang. “Hamiltonian Simulation by Qubitization”. In:
Quantum 3 (2019). arXiv:1610.06546, p. 163.

Lin Lin and Yu Tong. “Near-optimal ground state preparation”. In: Quantum 4 (2020).
arXiv:2002.12508, p. 372.

Lin Lin and Yu Tong. “Heisenberg-Limited Ground-State Energy Estimation for Early
Fault-Tolerant Quantum Computers”. In: PRX Quantum 3.1 (2022). arXiv:2102. 11340,
p. 010318.

Guoming Wang, Daniel Stilck Franc¢a, Ruizhe Zhang, Shuchen Zhu, and Peter D Johnson.
“Quantum algorithm for ground state energy estimation using circuit depth with exponen-
tially improved dependence on precision”. In: Quantum 7 (2023). arXiv:2209.06811,
p. 1167.

Guoming Wang, Daniel Stilck Fran¢ca, Gumaro Rendon, and Peter D Johnson. “Effi-
cient ground-state-energy estimation and certification on early fault-tolerant quantum
computers”. In: Physical Review A 111.1 (2025). arXiv:2304.09827, p. 012426.

Kianna Wan, Mario Berta, and Earl T. Campbell. “Randomized Quantum Algorithm
for Statistical Phase Estimation”. In: Phys. Rev. Lett. 129.3 (2022). arXiv:2110.12071,
p. 030503.

Samson Wang, Sam McArdle, and Mario Berta. “Qubit-efficient randomized quantum
algorithms for linear algebra”. In: PRX Quantum 5.2 (2024). arXiv:2302.01873,
p. 020324.

James D Watson and Jacob Watkins. “Exponentially Reduced Circuit Depths Using
Trotter Error Mitigation”. arXiv:2408.14385. 2024.

James D Watson and Jacob Watkins. “Exponentially Reduced Circuit Depths Using
Trotter Error Mitigation™. In: arXiv preprint arXiv:2408.14385 (2024).


https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.3.040305
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.3.040305
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.3.040305
https://arxiv.org/abs/2204.05955
https://arxiv.org/abs/2503.05647
https://dx.doi.org/https://doi.org/10.22331/q-2025-04-01-1682
https://dx.doi.org/https://doi.org/10.22331/q-2025-04-01-1682
https://arxiv.org/abs/2405.03754
https://dx.doi.org/10.1103/PhysRevLett.118.010501
https://dx.doi.org/10.1103/PhysRevLett.118.010501
https://arxiv.org/abs/1606.02685
https://dx.doi.org/10.22331/q-2019-07-12-163
https://arxiv.org/abs/1610.06546
https://dx.doi.org/10.22331/q-2020-12-14-372
https://arxiv.org/abs/2002.12508
https://dx.doi.org/10.1103/PRXQuantum.3.010318
https://dx.doi.org/10.1103/PRXQuantum.3.010318
https://arxiv.org/abs/2102.11340
https://dx.doi.org/https://doi.org/10.22331/q-2023-11-06-1167
https://dx.doi.org/https://doi.org/10.22331/q-2023-11-06-1167
https://arxiv.org/abs/2209.06811
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.111.012426
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.111.012426
https://dx.doi.org/https://doi.org/10.1103/PhysRevA.111.012426
https://arxiv.org/abs/2304.09827
https://dx.doi.org/10.1103/PhysRevLett.129.030503
https://dx.doi.org/10.1103/PhysRevLett.129.030503
https://arxiv.org/abs/2110.12071
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.5.020324
https://dx.doi.org/https://doi.org/10.1103/PRXQuantum.5.020324
https://arxiv.org/abs/2302.01873
https://arxiv.org/abs/2408.14385
https://dx.doi.org/https://doi.org/10.48550/arXiv.2408.14385
https://dx.doi.org/https://doi.org/10.48550/arXiv.2408.14385

	References

