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Abstract

We develop quantum algorithms for estimating properties of general matrix functions
using product formulae, with applications to phase estimation, Green’s function evaluation, and
sampling from time-evolved states. The resulting methods exhibit low depth, commutator scaling
similar to that found for product formulae, and require only a single ancillary qubit. Our central
primitive applies Richardson extrapolation to product formulae. By considering a randomized
compilation scheme, we also give a protocol to statistically approximate measurement statistics
of quantum states, which extends previous settings beyond observable estimation. We give
refined analyses of gate complexities for k-local and power law systems; matrix ensembles with
long tails; systems where commutator scaling is only understood up to a fixed order; and settings
where there is a prior on input states — those with fixed Fermion number.
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1 Introduction

1.1 Motivation and Background

Simulating quantum systems has long been a foundational motivation for quantum computing
and remains one of the most promising paths toward achieving near-term quantum advantage. In
recent years, there has been a growing focus on early fault-tolerant (EFT) quantum computing—an
emerging paradigm that seeks to implement practically useful quantum algorithms on small-scale
error-corrected devices, constrained by limited qubit counts and circuit depth. EFT algorithms
are designed to make the most of these constraints, typically by trading off quantum resources
for increased classical post-processing or runtime. Many EFT approaches build directly on time
evolution as a core subroutine, making it a central building block in this regime.

A wide range of EFT algorithms leverage Hamiltonian simulation to perform tasks such as
quantum phase estimation, ground state preparation, and solving linear systems. Notable examples
that will relate to our work include the seminal work of Lin and Tong [LT22], who achieve
Heisenberg-limited precision using just one ancilla qubit and classical post-processing (if time
evolution is specified as an oracle); Wan et al. [WBC22b], who reduce circuit depth via randomized
measurements; and Wang et al. [WMB24], who generalize the randomized approach to matrix
function algorithms. Outside of this, the EFT paradigm has motivated a body of work on reducing
quantum resources using classical overhead [Cam21; DLT22; Wan+23; Wan+25; Kis+25].

At the heart of many of these EFT algorithms lies time evolution—the simulation of unitary
dynamics e~IT for a Hamiltonian H over time 7. There are four main algorithmic families for
simulating time evolution: product formulae (commonly referred to as Trotterization) [L.1096],
linear combinations of unitaries (LCU) [CW12], quantum walks [BC12], and qubitization [LC19].
Among these, qubitization holds the best asymptotic complexities, and product formulae stand
out as especially well-suited to the EFT setting. While they have worse asymptotic scaling than
more advanced methods, they require no ancillary qubits or complex block-encoding (allowing
them to be run on quantum devices in the present day), and their component operations decompose
naturally into native gates, which simplifies compilation and reduces overhead. Importantly, they also
preserve physical properties such as symmetries and locality [Tra+20], and their error bounds—while
formally scaling with nested commutators—tend to perform much better empirically than worst-case
predictions suggest [HHZ19].

These advantages make product formulae a compelling candidate for near-term EFT implement-
ations. As such, understanding and improving time evolution via product formulae in the EFT
regime remains a central challenge—and opportunity—for early practical quantum algorithms.

1.2 Main Contributions

We develop and refine analyses for two simple but powerful subroutines. The first enables the
estimation of the following quantities:

estimate Tr[p f(H)] and Tr[ f (H)p f(H)" O] to additive precision ¢, (1)



where p is a quantum state, O is an observable, and f(H) denotes the eigenvalue transform of the
function f on a Hermitian operator H. The second allows us to approximate measurement statistics
of the state proportional to f(H) |). Specifically, we ask

return ¥ such that |¥ — 7||» < € for p; := | (| f(H) |y |*. (2)

We view these two tasks as broadly applicable framework that accommodates a lot of quantum
algorithms targeting practical applications — in both outputting scalar quantities or in sampling tasks.
While some algorithmic approaches in the literature produce a quantum state as their output, most
truly end-to-end use cases ultimately require a classical output [Dal+23]. To make this concrete,
consider a simple example: if f is an inverse function and p = |y)(¥| is a pure state that encodes a
data vector ¥, this setup corresponds to the well-known quantum linear systems problem [HHL09].
If the observable O is taken to be a local measurement, then the resulting quantity gives a marginal
of the solution to the linear system. More generally, Tasks (1) and (2) can be used to extract spectral
information about a target matrix H.

We give algorithms to instantiate Tasks (1) and (2) whenever given Fourier approximation to the
function f, and ability to Trotterize A. The central idea is to consider an extrapolation of circuits
consisting of product formulae of different step sizes, and extracting estimates of this extrapolation
in a sample-efficient manner via randomization. The algorithms exhibit commutator scaling, and use
a single ancillary qubit. Further, the gate complexity can be substantially improved over algorithms
using product formula without extrapolation.

We remark that Task (1) is also instantiable with the same gate complexity as our approach using
recent work [Cha+25], which introduces a more general primitive. Nevertheless, we still elucidate
Task (1) in full using our randomized compiler, and provides a simpler streamlined proof specified
for matrix function tasks. Task (2) has not traditionally been considered before in the literature aside
from in [WMB24], and it opens up a new way to probe output distributions of quantum states despite
being in an early fault-tolerant setting where matrix processing is not instantiated fully coherently.

The finer details of the complexity depends on the properties of the function of interest, f,
and are presented in Theorems 24 and 27. Generally, both algorithms require O (1/&?) samples
from quantum circuits to estimate both quantities to additive precision &, with additional factors
again depending on the function. In the following sections, we elucidate the complexity of a core
subroutine and compare with prior art. We also discuss complexities of specific tasks in Section 1.5.

Our second contribution is to demonstrate refined gate complexities in a number of settings that
exploit commutator scaling. These were all previously unknown for extrapolated product formulae
circuits or not explicitly instantiated. We cover

* k-local systems, subsuming with it models of power-law interactions. Here, previous studies
on extrapolation ([WW24a; Cha+25]) could not account for this on account the commutator
factor diverging.

* Scenarios where commutator scaling for standard product formula is only understood for a
fixed order. Previous studies could only exploit commutator scaling when scaling is understood
at every order.



* Interpolation of our scaling with randomized formula, exploiting the ideas of [Giin+25], which
can be particularly advantageous for matrix ensembles with long tails.

 Settings where a prior is known on the input state: states with well-defined Fermion number.

1.3 Warm-up: compiling a time signal

In this section we discuss a special case of Task (1): estimating the time signal Tr[pe~"#T] for a
given time 7'. This serves both as a warm-up and as essentially a core primitive through our work.
Further, this gives us a chance to compare complexities with other primitive to instantiate time
evolution in a transparent.

Our main algorithmic tool is to apply Richardson extrapolation to product formula approximations
of time signals. The idea is simple algorithmically: simulate the system at multiple step sizes
0; = s;T, then combine the results using a carefully chosen linear combination that cancels out
low-order errors. With m such simulations, this technique can suppress errors up to order O (6”+!),
if step sizes lie within a radius of convergence, to be defined.

This approach is well-suited to early fault-tolerant (EFT) quantum devices. Instead of requiring
deeper circuits to achieve higher accuracy, Richardson extrapolation reduces quantum depth through
classical post-processing—trading shorter circuits for more samples. Furthermore, we demonstrate
in this section that the sample blowup can be made very mild by use of a randomized protocol.

Let us start by introducing some notation.

Definition 1. We consider Hermitian matrices H € C*"*%"

r
H=)"Hy,

y=1

, expressed as a sum of I terms:

where it is assumed that the unitaries exp(—iH,t) are instantiable for all t and vy in O (1) gate depth.
We define A := 25:1 |H, ||, as the sum of the strength of individual terms, where || - || denotes the
operator norm.

Generically, the gate complexity of algorithms for time evolution depend on A. However, the

complexity of p-th order product formulae can be shown to depend on a refined quantity (aéé’;lg) p,

which we define below.

Definition 2 (Commutator factor). Given the decomposition H = 25:1 H, from the previous
definition, we define the order-j commutator operator

r

e = ), ([Hy [Hysoo o 1Hy, )L
Y1y =1

that is, the sum over all j-fold nested commutators formed from the Hamiltonian terms H,.
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Table 1: Complexity comparison for the task of approximating a time signal Tr[pe~"¥T]. In order to

allow comparison with the random compiler of [WBC22b] we have assumed that the Hamiltonian is given as

a linear combination of I" Pauli matrices. The quantity aég’ntQ < %(2/\)” *1 is a sum of nested commutators,

and A¢omm < 4A is constructed from sums of nested commutators.

It is known that in many cases (aéﬁf{l}% /P << A, which leads to significant advantage of product

formula over other methods in dependence on Hamiltonian parameters.

We present the resource overhead of our algorithm framework for the compilation of a time
signal in Table 1.

While qubitization achieves the best asymptotic scaling in terms of precision, we argue it is not
likely the strongest candidate for early fault-tolerant (EFT) devices. This is due to the confluence of
a few properties: qubitization has a larger space overhead, it requires complex multi-qubit-controlled
gates, and (to our knowledge) there are not currently ways to improve its gate complexity by
exploiting physical properties of the Hamiltonian such as locality. Product formulae, on the other
hand, can be hardware-friendly and can take advantage of commutator scaling, often performing
well in practice. However, they suffer from exponentially worse scaling with respect to the target
error. The randomized algorithm proposed in [WBC22b] (built in the spirit of gDRIFT [Cam19] yet
distinct and catered specifically for this task) sidesteps the exponentially worse error dependence,
and is unique in having no dependence on the number of Hamiltonian terms I". However, this comes
at the cost of forfeiting commutator scaling and incurring a quadratic scaling with evolution time.
Further, we note that the approach of [WBC22b] requires a decomposition of H in the Pauli basis,
which may not always be efficiently obtainable or be the most useful decomposition. In contrast, our
approach works as long as H can be decomposed into efficiently simulable Hamiltonians, which is a
more general data access assumption.

Our algorithm retains the advantageous properties of product formulae—such as no additional
space overhead, subquadratic scaling in the time parameter 7', and a commutator-sensitive error
structure—while achieving additive error € using circuits of depth that scales sub-polynomially with
1/e. This yields an exponential improvement in precision dependence compared to standard Trotter
methods.



1.4 Commutator scaling for extrapolation

Our algorithms are found to depend on a quantity A¢omm Which we define below.

Definition 3 (Extrapolated commutator factor).

. 1
 alid \
Acomm = Sup Z l_[ — .
JEL zowm \ ;g el e+ 1)
1<t<K R =P
Jitetje=]

We remark that any bound on this quantity requires understanding of a/ééznm at every order j. For

instance, if @'/} = O(c7) for some constant ¢, then deomm = O ((ZD)(1/P) which is the case of

second-quantized Hamiltonians in the plane wave basis [Cha+25]. However, knowledge of aééfnm
at every order is not always available, or known bounds are too large and leads to a divergence in
Acomms as 1s the case for k-local systems. In the rest of this section we discuss resolutions of these

issues, as well as refinements to the scaling in row (i) of Table 1.

1.4.1 Partial Randomization

The most relevant early fault-tolerant alternatives to Algorithm | are randomized Hamiltonian
simulation methods, such as those in [WBC22b]. These methods avoid explicit dependence on the
number of Hamiltonian terms I" by introducing randomness into the simulation steps, with costs
that scale with the operator norm 4 = A. However, when A is dominated by a few large terms,
performance can degrade.

Our approach refines this idea by combining Richardson extrapolation with partial randomization,
as developed in [Glin+25]. This yields a hybrid scheme that interpolates between deterministic
Trotter formulas and fully randomized strategies, enabling flexible tradeoffs between dependence on
&7l and A.

In standard Trotter methods, the cost scales linearly with I" and favorably with &~ !, but becomes
impractical when I" = O(N*), as in many electronic structure problems. Randomized product
formulae eliminate the dependence on T', but their cost scales as O (A%%), which can be suboptimal
when A is large.

By decomposing the Hamiltonian into a few dominant terms treated deterministically and a long
tail of small terms handled randomly, we balance the strengths of both approaches. Embedding
this decomposition into a Richardson extrapolation framework allows systematic error suppression
while keeping circuit depth low.

We now state an informal version of our main theorem, summarizing the resource complexity of
estimating Tr[ Ze~"#T] with this method:

Theorem 4 (Extrapolated partial randomization (informal version of Theorem 44)). Given any
decomposition H = Hy + H + B, the time signal Tr[pe 1] can be estimated to additive error &



and with success probability at least (1 — ) using Algorithm 2, with resources

~ ~ 1+4
Cgate =0 (LA (amax Y Acomm T) T + /l%Tz) ;

~ (1 1
Csample =0 (; log (5))

where L 4 is the number of deterministic (Trotterized) terms, Ap is the total weight of the randomized
tail terms, and Acomm < Acomm depends on the norms of nested commutators.

This result constitutes row (ii1) of Table 1.

1.4.2 k-Local Systems

For k-local systems on n qubits with maximum on-site energy g, we have (aéggz) 1r = 0(kgpA'/P).

Our key result is that in our extrapolation algorithms (as well as prior art [WW24a; Cha+25]) we
can consider Adcomm — Ak-10cal Where for the time signal compilation

Ttoca = O(kg (PAY? + g log(ngT /2))) .

and for general applications, there is an additional additive logarithmic term. Thus, the key
features of commutator scaling for k-local systems are replicated, with mild logarithmic overhead.
We present analysis in detail in Section 4.

1.4.3 Exploiting Fixed Fermion Number

For systems confined to an n-fermion subspace, we can improve our analysis by using the fermionic
semi-norm. In this context, the operators preserve the number of fermions, meaning they map states
with exactly n electrons back to states with the same number of electrons. As a result, the gate
complexity depends on the fermionic semi-norms of nested commutators rather than more general
norms. Although the overall bounds remain similar, they are now expressed in terms of a specialized
quantity dcomm — ag’gﬂnm, which is derived from a tighter parameter aégﬁnm that can be significantly
smaller than the original acomm, as elucidated in earlier studies [MCS22; SHC21; Low+23]. We

present the explicit form of Aggznm in Section 5.

1.5 Applications

We instantiate our algorithms for two scalar tasks: phase estimation and estimating Green functions
in many-body physics. We also demonstrate an application for recovering distribution information
of time-evolved states.

1.5.1 Phase Estimation

In phase estimation, the goal is to compute the ground energy E( of a given Hamiltonian H. We use
the early-fault-tolerant approach proposed by Lin and Tong [L.T22] in which we approximate the

8



Heaviside function using a Fourier series approximation. The key idea is the Heaviside function
serves as a filter for eigenvalues, and prepares a cumulative distribution function corresponding to
eigenspectrum, weighted by p. Thus, by probing values of the (approximate) Heaviside function,
one can determine the ground state energy by finding the first jump of the cumulative distribution. It
is important to note that Lin and Tong [LLT22] specify their algorithm in terms of time evolution
oracles, and it is necessary to instantiate it. We instantiate their oracle with our primitive, and
compile the cumulative distribution function in a randomized fashion, which competes with the
fully randomized algorithm of [WBC22b].

We directly apply our primitive from Algorithm | to implement the cumulative distribution
function, _ _

C(x)=Tr[pO(xI —kH)]

where @ is a filter that approximates the Heaviside function. More details are provided in Section 7
but our main results are in the following theorem.

Theorem 5 (Phase estimation (informal version of Theorem 51)). The ground state energy estimation
problem can be solved to precision & and with success probability at least (1 — §) using the above

algorithm with resources
1+1
) /w)
g

~ (1
Caml :0(_)
sample 772

where Acomm is the commutator and U is the number of terms in the Hamiltonian decomposition
used for Trotterization.

Cgale = 0~

ancillary max depth per sample samples | commutator
method qubits 0(") 0(") scaling?
QETUU;’L%‘;Z”%ZUI‘;I]‘ Mog(I)] + 3 TA/e 1/n
R B e R O IRV /
Randomcongier | w1 0
hrovocrnd IR BT RV

Table 2: Phase estimation complexity comparison. For Hamiltonian H = 21;:1 he, A = 25:1 | ae]l,
n = Tr[pIlp] the initial state overlap, Acomm < 4A defined in Lemma 11. We have assumed constant order p.

We contextualize our phase estimation algorithm with other reading approaches in the literature
in Table 2. We compare our algorithm with a refined early fault-tolerant approach, QET-U, where

9



time evolution is instantiated with qubitization [LC17] and Trotter formulae. We also compare our
algorithm with the randomized compilation approach of [WBC22b]. In a similar comparison of
our method with other modern approaches, we observe the following trade-offs. While QET-U
+ Qubitization achieves the best asymptotic circuit depth, it is not early fault-tolerant due to its
logarithmic scaling in the number of ancillary qubits. QET-U + Trotter, on the other hand, retains
commutator scaling and requires only a single ancilla qubit, but introduces an additional scaling
overhead of 7!/7. The Random Compiler method loses commutator scaling entirely and exhibits
quadratic scaling with respect to £72.

Our approach combines the most favorable aspects of these techniques: it is early fault-tolerant,
preserves commutator scaling, and achieves subquadratic scaling in &', albeit at the cost of

quadratically worse sample complexity.

1.5.2 Green’s Functions

Green’s function characterize how a quantum system responds to external perturbations and is
essential for determining spectral properties such as excitation energies. In quantum many-body
physics, the Green’s function provides detailed information about the system’s dynamical behavior,
including how particles propagate and interact over time. It plays a central role in predicting
measurable quantities like absorption spectra, density of states, and lifetimes of excited states. To
obtain the Green’s function, we estimate the resolvent operator, defined as

R(w + il'broads PI) = (w + ilbroad — [:I)_l’

where H is the system Hamiltonian and w is the energy variable. A small positive broadening
factor (I'broag > 0) 1s introduced to shift the poles of the resolvent into the complex plane, ensuring
numerical stability and convergence. This allows for a more tractable approximation of the Green’s
function.

We apply Algorithm 1 to implement the Linear Combination of Unitaries 4 (w + iTproad — H) ™!
approximation of the resolvent operator R(w + il broad, H)

Theorem 6 (Resolvent estimation (informal version of Theorem 55)). The resolvent operator
R(w + irbmad, FI) = ((,() + inroad - ﬁ)_l

can be estimated to additive error & and with success probability at least (1—8) using the randomized
Richardson algorithm with resource costs

1+1
~ A p
Cgate ~olr ( comm)
Iﬁbroad
C 0 ! )
sample = ~ 2
I_‘broad €

where amax is the maximum expansion coefficient, Y is the truncation factor, Acomm is the commutator
bound, and Tpypaq is the broadening parameter.

10



1.5.3 Time-evolved states

Theorem 7 (Sampling distribution of time-evolved states (informal)). We give an algorithm to
approximate the measurement probability distribution p; := | (i e” T 1y |2 in & norm error
e. The algorithm uses O(1/€?) samples of a circuit with one ancillary qubit and gate depth

1
Cgate =0 (F (@max Y Adcomm T)Hp 10g(l/8)).
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2 Series expansion for time signal

In this section, we derive a series expansion for the time signal under the Trotter formulas. Our goal
is to express the time signal as a power series in the inverse Trotter step number 1/r. This series
expansion will be the key tool used for Richardson extrapolation. We start with the variation of
parameters formula:

t
e(A+B)t — eAl+/ eA(l‘—T)Be(A+B)TdT, (3)
0

and then use the following lemma from [WW24b, Lemma 2].

To analyze general Trotter-like methods more systematically, we consider the class of product
formulae known as staged product formulae, which encompass both Lie-Trotter and higher-order
Suzuki formulas.

Definition 8 (Staged Product Formula [Chi+21a]). A staged product formula P(t) is an approximation

to e of the form
Y ©
P(t) = n n ety Hry) 4)

v=1 y=1

where:
* Y € Z" is the number of stages,
o I € Z* is the number of terms per stage,
* d(y,y) € Rare real-valued coeflicients,

* m, € Sr are permutations,

11



* and each H; is a term in a decomposition H = er‘:l H; of the full Hamiltonian.

This formulation enables a structured sequence of exponentials that can be tailored through the

choice of a(, ,) and ,,. The order of a product formula refers to how well it approximates e " in
the small-time limit. Specifically, a formula is said to be of order p € Z* if it satisfies
P(1)—e ' =0y ast — 0. (5)

In what follows, we use this formulation to express the approximation error of such formulas as
a power series in 1/r, and thereby facilitate the use of extrapolation techniques.

2.1 Error Expansion for Time-evolved Observables

Lemma 9 (Effective Hamiltonian Error Series ((WW24b], Lemma 2)). Let P be a staged product
formula with coefficients a, ) of order p € Z,, and let Heg be the effective Hamiltonian of P
defined by the relation

?(t) — e—i[Heﬁ(t) ,
fort € R. Suppose that there exists a J € Z, and C € R, such that

sup ) (amax Y1) < C,
j=J

With amax = MaXy y|d(y,)| and X as the number of stages of the staged product formula. Then the
effective Hamiltonian can be written as a convergent series

He (1) = H + Z Ejut’,
=1

where
n

(_i)j_l ( ] ) i Xj XJ
E; =~ - , al’ ¢~(H“,...,X’"),
J ,]’ ; J1e e jn 1:1[ i J Y1 Yn
andn = YI" where I is the number of simpler Hamiltonians that H 5 is broken into (so H i = er:] H;).
Moreover, E; satisfies the bound

(a Y)f .
5] < =5— o -

For convenience, we express the Magnus expansion Hamiltonian as
Hep (1) = H+A(1),

where A(s) = Z;’.‘;l E;41(sT) and H is the Hamiltonian of interest that we are trying to simulate.
We apply the variation of parameters formula (Eq. (3)) on this H.g expression to write:

t
eitHeﬂ‘(t) — eth +/ ei(l—T)Hl'A(s)eiTHeff(l)dT.
0
We use this formula to prove the following lemma.

12



Lemma 10. Let P be a staged pth order product formula. Then
P(Z‘) — e—itHetf([)

be the approximate evolution operator for duration T € R and Trotter step size t = sT, with s =0
defined via the limit. Suppose that there exists a J € Z, and C € R, such that

sup @) (amax Y1sT]) < C,
jzJ

With amax = maXU’yla(U,y) |. Let o =2 if P is symmetric, 1 otherwise. Then for any K € Z., the
approximation error in P (sT) compared with the exact evolution may be expressed as

Telp(P(T) =] = 3 ' TrlpEjur k(1)) + Tr[pFy(T. 5)].
JEOTZiZp

Here, E j+1,k(T) and Fx (T, s) are operators whose spectral norm ||-|| is bounded as

min{K-1,j/p]}

2 i (amaxYT)l ! oVt
||Ej+1,K(T)|| < (amax YT)’ Z ~— 7 Z n @comm

! 2
=1 I i jieoZyzp \k=1 e+ 1)
jrd =)
min{K-1,|j/pl} (amaxYT/lj l)j+l
= ‘ .
— Al
Note that -
(Je+l
ac{)njm) = Z I:H'yl’ [H’}/za"-’ [H’ijfl’H’yfk] ...]]
Y1Y2 Vi =1
Where we have denoted
l e+D) 1/ (G+D)
a
/lj’l — ( comm )
2, |l e+ 1)

J1.--J1€0Z+2p k=1
Jit+ji=]
Proof. Recall from [WW24b, Lemma 3] that a pth order staged product formula has error operator
A(s) = Xjegz,>p Ejr1 - (sT)) wher o = 2 if P is symmetric, 1 otherwise. Using the variation-of-
parameters formula, we can iteratively substitute the same formula into itself multiple times. Doing
so K € Z* times, we can write the following:

o THen(s) — ,iHT | (6)
+ Z / dTi / dry- - / dr " T HIA(5) " THA(s) L /T HA (5) T
(7)
T Tl Tp-1 . . , .
+ / dt; / dr--- / dTKe’(T_TI)HiA(s)e’(TI_TZ)HiA(s) o @ TE TR A () oI Hert (5),
0 0 0
)
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Taking line (7) and expanding the definition of A(s),

K_l T Tl Tl_l . . . .
Z/ dn/ dt- / dr e T HA(5) M A(s) L fT1mH A (5) T
—~Jo 0 0

K=1 a7 7| T-1
= Z / dTl / de' . / dT[
=1 Y0 0 0
K-1 T 71 TI-1
= Z / dTl / de- c /
=1 Y0 0 0

dt,

o~

1

[ 2

k=l \jx€oZi2p

el(TK_l_TK)HiEjK+1t]K elHTl

1
jeoZizpl  ji...ji€0Zi=p \ k=l
b=

where we have denoted 79 = 7. We now reinsert ¢t = s7T', and make a change of variables s; = 7;/T.

This gives

K-1

1 S Si-1
Z T[ / d81 / dSz- s / dS]
=1 0 0 0

JeoZizpl

1
Z (ST)J Z (l_l i(Sx—1 sK)TH EJK | elHSlT.
J1...Ji€cZizp \ k=l
Jittji=]

Next, we regroup the sum according to the degree of s, which yields

min{K-1, LJ /pl}

D, 1)

JEOTZiZp

Z sTE 41 x(T).

jeo‘Z+2p

Here, we have defined

T/+l/ dslf dSQ /

Ejx(T) =
mm{K LLj/pl}

We now want to put bounds on the norm of E 4 k. Using the triangle inequality, unitarity of e

and evaluating the remaining integral,

-1
Tl/ ds1/ dsy- - / ds; Z

J1Ji€0Zyzp \ k=l

Ji+eti=]

1
-1
dSl Z (ﬂez(skl—sK)THiEjK+l etslTH. (9)
J1---J1€0Zi=p \ k=l
Jire =]
iTH

mm{K LLj/pl} !
- 1
V(T < T / [ [ as [THE .1
J1-- jIEG'Z+>p k=1
Jitetji=]
~min{K—1,1/pl} T! [
<7 o [ [1Ej 1
=1 J1-JI€CZyzp \ k=1
Jitetji=]
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Applying Lemma 9,
min{K—1,[j/pl}

. . T!
|EpaMI<T > 7 )
=1 J1.-JIECZy2p

Jite+ji=j
min{K-1,j/p|}

~ (@ YT)! T ool
= (amax YT)’ Z “T Z (1—[ (]K+1)2)

=1 J1-Ji€0Zy2p \ k=1
Jit+ji=j

l .
n Cy(j,(+1) (amaxY)JK+1

o 12

k=1

So far we have considered the terms in line (7). We now consider line (8), which we will denote as
Fx(T,s). Applying the triangle inequality and utilising unitarity in a similar manner as above, we
can check that the operator norm of Fx (7, s) is bounded by

N TK X
|Fk(T,s)|| < EIIA(S)II
- \K (10)
<<l 20 IEmlGT
“\jeocZ.,>p
which vanishes for K — oo, so we take this limit. O

2.2 Extrapolation Error Bound

In this subsection we characterize the extrapolation error, assuming exact computation of Trotterized
time series. We first state a lemma which bounds the extrapolation error for any Richardson
extrapolation scheme for any Hamiltonian assuming the conditions of Lemma 10.

Lemma 11 (Generic Richardson extrapolation error for time signal). Let P be a staged pth order
product formula of symmetry class o as Definition 8. For a target evolution time T let

m
R . 1
PIT) = 3 beP 1/ (5iT) |
k=1
denote an m-term Richardson extrapolation, with ascending sequence of Trotter steps ry =
o 0'2

1/sx € Z,, which cancel the powers s7, s72, ..., s7 "=V Then, the error in the extrapolation of a
Trotterized time signal, as compared to an exact time signal, satisfies

(amax YA
[Trlp Py (T) = e D1 < 1Bl Y s Z T

JEOZ, =
j=om

TJ l)]+l

for any quantum state p, where ||b||1 =2 bk, K = [ > -‘ and we denote

L Ut \1/G+)
Acomm = sup /lj,l > /lj,l = ( Z n .comm 2) .

je(lrészzgm J1--J1€0Z,2p k=1 e+ 1)
== Jite+ji=j

15



Proof. From Lemma 10, recall we have the error series in s as

Trlp(P(sT) = e ™)) = > $ITe[pE ok (T)] + Tr[pFi (T, 5)],
JEOTZiZp

for any K € Z,, with ||Fx (T, s)|| = O(sX?). Richardson extrapolation with m terms removes all
terms of size up to and including O (s”"~1) in the series. In particular, if we choose K such
that Kp > o(m — 1) then the m-term Richardson series only cancels terms in E. Concretely,
choose K = [om/p]. We denote the the Richardson extrapolation of P!/%(sT) as P,g{f,z(T) =
2y bP U/sk(s;T), where by, are the extrapolation coefficients, and write the extrapolation error as

Tr[p(Pyin(T) = e )] = " bill Romny (T, s0).

where R (,u-1)(T, si) denotes the Taylor remainder of degree o-(m — 1) satisfying

Ry (m-1)(T, s) = Z S{;EjH,K(T)"'FK(T, Sk) s
JjeEToZy
j=om

for each inverse Trotter step sx. The Taylor remainder for inverse Trotter step s has size

|Renn(Tosoll < 3 st B x| +[|Fx (.50

JEOZy
jzom
K-1 j+K
Z Z amaxY/lcomm Jl + Z amaxY/lcommle)
K!
JETZ, =1 JETZ, :
j=om Jj=Kp
K J+l
amaxY/lcomm _]l)
-y 43 |
JETZy =1
jzom

where we have used Lemma 10, denoted 4 ; as in the statement of this Lemma, and in the final
inequality have extended the sum in the second term to start at the smaller value j > o-m and merged
the sum over /. We remark that in the final bound the second term is wholly independent of s, and
thus the largest bound of remainder terms comes at inverse step number s;. Using this fact and
Holder’s inequality, the size of the error can be bounded as

(R) —iHT 7 2 j u (amaxY/lcommTj,l)jH
|Tr[p(7)p,m(T)_e )]l < ”blll'maX”Rcr(m—l)(Ta Sk)” < ”b”l E S §
k [
JEOLy =1
j=om
where we have denoted b := (by, .., b,,) as the vector of extrapolation coefficients. O

16



We then simplify the Richardson extrapolation error bound by adding a lower bound on the
number of Trotter steps required.

Lemma 12. Adopt the setting of Lemma 11, and choose the largest inverse Trotter step number
51 such that s1amax Y AdcommI < 1/2. Define n := max{1, amax YT Acomm}.- The m-term Richardson
extrapolation error for a staged pth-order product formula of symmetry class o is bounded as

ITe[p (PSRN = e HTY]| < 4l1B]1 7771 (51@max Y AcommT)T™ .

Proof. We continue from Eq. (2.2) of Lemma 1 1. Note that

J+ K [
Z (amaxY/lcomm ) < (amaxY/lcommT)j Z (amaxY;l‘commT)
=1 ’

< (amaxY/lcommT)j TIK(e - 1) .

Thus, the sum over j in Eq. (2.2) can be bounded

m s ' ‘
Z Z (amax comm ) < nK(e _ 1) Z s{ (ClmaxY/lcommT)]

JEOLy = JETZy
jzom j=om
K om J j
<7*(e = 1) (51ama Ydeomm?)™" D" 51 (amax YAcommT)
JeEoZy
j=0
K 1)/
<n"(e—1) (s1amax Y dcommT) """ Z (5)
JEOZ,
j=0

< 477K (SlamaxY/lcommT)Um .

2.3 Well-conditioned Extrapolation Strategy

We now adopt the extrapolation strategy from [LKW19] to obtain an approximation with error
O (log(m)s*™) = O(s™), using coefficients whose condition number grows only as O (log m).

Lemma 13. (Well-conditioned Richardson extrapolation [LKW19] (Lemma 5 in [WW24b])) Let
f € C?*™2([~1,1]) be an even, real-valued function of s, and let P; and R; be the degree j Taylor
polynomial and Taylor remainder, respectively, such that f(s) = P;(s) + R (s). Let

FU(s) = > bif(se)
k=1

17



be the unique Richardson extrapolation of f at points sy, 2, . .. Sy given by

\8m/n
sin(w(2k — 1)/8m)

N
Sk = —3 Qk:qscale[ “’ ke{l,...,m},
qk

where @gcale € Zy satisfies m < qi/qscale < 3m? [LKW19], and by given by

2

b i
=l a2
x2—x2

ik i k

Then, the extrapolated function satisfies
m
FU(s) = £(0)+ > biRon(st) ,
k=1

and ||b|), = O(logm).

With this better defined extrapolation strategy, we can further refined our error bound as provided
in the following lemma.

Lemma 14 (Richardson extrapolation error with well-conditioned extrapolation). Denote the
extrapolation error using Richardson extrapolation as g as

£r = ‘Tr[pe_iHT] ~Tr[p PR

We suppose that Pl(?{i,)l(T) is constructed using the well-conditioned extrapolation strategy of Lemma
13. With this, to obtain extrapolation error eg < ¢ it is sufficient to run m = O(log(1/¢)) different

extrapolation circuits, each with a maximum of O ((amaXY/lcommT)(Hl/ P) log(1/ 3)) Trotter steps.
Proof. For the extrapolation error, recall Lemma 12 gives
ER < 4”5”1 nI'O'm/p'I (SlamaxY/lcommT)o—m ,

where 17 := max{1, amax YT Acomm}. Using the extrapolation strategy of Lemma 13 with a large
enough rgc,1e We can ensure that amax Y Acomm? > 1. Similarly we can use this to set € such that we
have the bound

er < 4Bl 7™ (@max Y AcommT) 7" 1P < g,

which implies that a sufficient base Trotter step number is anything satisfying

1
4||b||1)‘”"

iz
ry= 1/Sl = (amaXY/lcommT) P c

18



As (1/g)1/10201/2) = 0 (1) we can take m = O (log(1/¢))
ry = 0((amaxY/lcommT)(l+l/p))
and thus the largest number of Trotter steps satisfies

re < 3mry = 0((amaxY/lcommT)(l+l/p) log(l/‘g)) .

3 Randomized algorithm framework for matrix functions

We now present and analyze a randomized algorithm to estimate Tr[Z f (A)], where Z is an operator
with bounded Schatten 1-norm ||Z||;. In many cases, it is natural to take Z = p, a quantum state.
This algorithm forms a central building block for estimating more complex quantities such as
Tr[f(A)p f(A)TO], which arise in applications our applications of Phase Estimation and Green’s
function estimation.

3.1 Generalized Error Series and Error for Bounded Observables

Before introducing the main algorithm, we generalize the results from Lemmas 10 and 14 to a more
general operator Z instead of p. Therefore we get the following lemmas:

Lemma 15 (Observable error expansion for staged product formulae). Let P be a staged pth-order
product formula of symmetry class o € {1,2}, and suppose the effective Hamiltonian expansion
assumptions of Lemma 10 hold. Let A = 25:1 H,, be the Hamiltonian of interest, and let Z be an
operator. Then for any s € R and any integer K > 1, the observable expectation value satisfies the
expansion

Tr [Z Pl/s(sT)] =Tr [Z e'iAT] + Z s/ Tr [Z E_/H,K(T)] + Tr [Z Fx(T, s)] ,
JeEOoZiZp

where the operators E~J-+1,K(T) and Fx (T, s) as defined in Lemma 15.

Note that Lemma 15 follow very directly from the proof of Lemma 10, since this original proof is
independent of the properties of the operator. Similarly, we also derive the following corresponding
lemma to bound the number of Trotter steps.

Lemma 16 (Richardson extrapolation error for general observables). Let Z be an operator of an O(1)
Schatten 1-norm || Z||| and suppose that ngz (T) is an m-term Richardson extrapolation constructed
from a staged pth-order product formula P of symmetry class o, using the well-conditioned

extrapolation strategy of Lemma 13. Denote the extrapolation error as
e = Te [Ze ) - Te [z ()|

19



Then, to obtain error eg < &, it is sufficient to run m = O(log(1/¢)) extrapolation circuits, each
using at most

1
0 ((amaX Y Acomm I) 5 log (1/8))
Trotter steps.

Proof. The proof parallels that of Lemma 14, replacing the quantum state p with a bounded operator
Z in the trace expression. The key observation is that all bounds in Lemmas 10 and 11 depend on
the operator norm of the effective Hamiltonian series and not on properties specific to p. Since Z is
bounded and appears linearly in the trace, from Lemma 15 we get that:

Tr[ZPV(sT)] =Te[Ze ™|+ > s/ Tr[Z Ejax(T)] +Tr [Z Fx (T, 5)] .
jeoZiZp

Applying the same analysis as in Lemma 12
ER = ‘Tr [Z Pl/s(sT)] - Tr [Ze_iHT]‘ <eg
= )Tr [Z (PI/S(ST) - e_iHT)]‘ <eg
= |Z| - HSDI/S(ST) - e_iHT“OO <e (Holder’s inequality)
= 4Z 1Bl 7™ (s16max Y dcommT) ™ < &

With 7 := max{l, @max Y dcomm? }. Using the extrapolation strategy of Lemma 13 with large
enough rg,e We can ensure we can fix a long-time regime such that amax Y dcomm? > 1 thus
N = dmax Y Adcomm? - .

Now given this expression and considering that ||b||; = O(logm) and m = O(log(1/¢g)), we
find to bound & < €:

HZN1 151157 (dmax Y AcommT) /P < &
L A Z I 1B (max Y AdcommT) [T/ PT+om

:> om
S1 E
1
AR ol rom
=n= gz || e deomn) T

Since we consider ||Z||; = O(1), m = O(log(1/¢)), and ||77|| = O(logm) = O(loglog(1/¢)), then
ll/(logs)

&

= O(1), we get that as the base Trotter step count:
ri=0 ((amaxY/lcommT)Hl/p)
And thus the largest number of Trotter steps satisfies

ry < 3mry = 0((amaXY/lcommT)l+1/” log(l/s))
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. 1 .
Remark 17. Note that in general xx = exp (l“Tx), SO we can write

1

HZILBN) ™ _ o (mGIZIBID + In(1/2e)
€R om
In(4)|Z||, |15 1
= exp er_) since m :Clog(l/g))
om co
_ [ m@)iz|l) + i 1)
= eXp + —
om co
In(4(|Z O(log1 1
= exp n(4lZ|l) , O(loglogm) _)
om om co

Thus the step complexity remains the same as long as ||Z||; = O(log(1/¢g))

Remark 17 will be useful in Lemma 26.

3.2 Richardson Approximation of properties of /(A)

To motivate our algorithm, we first describe how to approximate properties of f(A) using Richardson
extrapolation combined with a truncated Fourier series.

Let A = 5:1 H, be a Hermitian operator (e.g., a Hamiltonian), and consider a function
f :R — C. We approximate f(A) by truncating its Fourier series expansion to K terms:

K

f(A) = fk(A) = Z cre M, (11)

k=1

where the coeflicients c; € C and time parameters 7; € R depend on the desired approximation
accuracy, specifically on the Fourier truncation error

er = [Tr[Zf(A)] - Tr[Z fk (A)]] .
We denote the maximal frequency by

T := max ftg,
1<k<K

and the vector of Fourier coefficients as ¢ = (cy, . . ., cx) with £;-norm

K
c =l = lexl.
k=1

Each exponential '’ is then approximated using an m-term Richardson extrapolation based on a
p-th order product formula #:

iAty

m
eiAtk ~ Z bj Pl/sj(Sjtk),
J=1
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where the coefficients b; come from a well-conditioned Richardson extrapolation scheme, and the
s; are scaling parameters (e.g., step sizes). We define the fully discretized Fourier—Richardson
approximation as

K m
Fiem(A) = D" D cxb; PV (s;tr). (12)

k=1 j=1

ilckbﬂ-

1 j=1

For convenience, denote

Z =

K
k=
Since the coefficients factorize as

K m
z-= (Zm) > 16| = 0(clogm) (13)
k=1 j=1

where the O (log m) factor arises from the growth of the Richardson coefficients {5} (see Lemma 13),
we obtain a clean bound on the normalization constant ZZ. This normalization plays a crucial role in
constructing probability distributions for randomized sampling in our main algorithm.

3.3 Main Algorithmic Primitive

We now present our main randomized algorithm for estimating quantities of the form Tr[Zf(A)].
Rather than implementing a linear combination of quantum circuits directly, we estimate the target
quantity by collecting samples from a family of circuits, chosen according to a carefully designed
classical probability distribution. Each circuit corresponds to a single term in the expansion of
f(A), and we use Hadamard test circuits to collect real and imaginary components of individual
trace contributions. The final estimate is obtained by averaging over many independent samples.
The exact analysis of our algorithm is provided in Theorem 23
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Algorithm 1 Randomized Algorithm for Estimating Tr[Z f(A)]
1: Classical Preprocessing: Compute the probability distribution:

2: for i =1 to Csample do
3: Sample an index pair (k’, j') from the classical distribution
4: Prepare the Hadamard test circuit corresponding to:

k' "
. XI({G) =Re [Tr (ZPI/S-/ (sjrtk/))]

k' ’
o XX = tm T (22157 (sm10) ) |

5 Collect one measurement outcome (a single-shot sample) from each circuit
6: Let X&) = Xl((]:) + iXI(r]:) be the resulting complex-valued sample

7: Multiply X <) by llck'bj |1 - sign(ci b ) and store the result

8: end for

9: Return: iy, the sample average over all Csample values

Note that step 4 of Algorithm | may not always be physically possible depending on the form of
operator Z. In this work, we specialize to two choices for the operator Z in the above algorithm.
The first case is when Z corresponds directly to a quantum state, which allows straightforward
preparation of the necessary circuits via Hadamard tests. In this case the analysis follows quite
cleanly as now only ||Z||; = 1.

The second case arises when Z can be decomposed as Z = OUp, where U is a unitary operator,
O is an observable, and p is a quantum state (in this case our Trotter circuit # corresponds to U).
We describe the circuit preparation for Step 4 of Algorithm 1 in the following subsection.

3.3.1 Explicit Circuit Preparation

In this subsection we describe how to prepare Step 4 of Algorithm 1, when Z = OUp, where U is an
implementable unitary operator, O is an observable, and p is a quantum state. This decomposition
enables the construction of the Hadamard test circuits by leveraging known methods for preparing
and measuring these components. We show and prove the constructions of the circuits in the
following lemmas.

Lemma 18 (Estimating Re (Tr[OU 1 pUg])). Let p be a quantum state, and let U1, U, O be unitary

or bounded operators with O = O7. Then, the expectation value
Re (Tr[OUlpU;])
can be estimated using the quantum circuit that prepares the real part of the trace by:
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* Initializing the ancilla in |+) with a Hadamard gate,

* Applying a controlled-U, (when control is |1)),

» Applying an anti-controlled-U, (when control is |0)),

* Applying the observable X ® O and measuring its expectation.

Proof. We can trace the circuit after each gate to verify its outcome:

1
[+) (+| ® p = 3 (0Ol p+|1){1|®@p+]0){1|®p+|1){0] ® p) (initial state)
1
3 (10001 @ p+ 1) (11 © U1pU] + [0) (11 ® pU] +11) (0] & Usp)
(apply controlled-Uy)
= 2 (10) 01 @ UspUs + 1) (1 ® U1pU] +10) (1] & UnpU] + [1) (0] @ U1 U
(apply anti-controlled-Us;)

NS

1 £
> Tr [(X ©0)-3 (|o> (1] ® UnpU’ +11) (0] ® UlpUg)]
(apply X ® O and take trace)

= % (Tr[OUszI] + Tr[OUlpU;]) (O Hermitian)

=Re (Tr[OUszI])

=Re (Tr[OUlp U; ]) (By cyclicity of trace)
O

Lemma 19 (Estimating Im (Tr[OU 1 pUg] )). Let p be a quantum state, and let Uy, U, O be unitary

or bounded operators with O = O7. Then, the expectation value
Im (Tr[OUlpUg])
can be estimated using the following quantum circuit procedure:
* Prepare an ancilla qubit in the |+i) = %(|O> +1|1)) state (e.g., by applying S then H to |0)),
* Apply a controlled-U; with the ancilla as control,

* Apply an anti-controlled-U,,

* Measure the observable Y ® O, where Y acts on the ancilla.

24



Proof. We can trace the circuit after each gate to verify its outcome:

|[+i) (+i| ® p = %(lO) O@ep+|1){1|®@p+il0){1|®p—-i|l){0]® p) (initial state)

1 . .
=5 (10 01® o+ 1) (1@ U1pU] +i10) (1] ® pU] ~i 1) (0l © Uip)
(apply controlled-U)

- % (10) €01 ® UapU3 +11) (11 © U1pU] +i10) (1] @ UspU} = i|1) (0] © U1pU}
(apply anti-controlled-Us;)
- Tr [(X ®0)- % (110) (@ UspUf - i 1) (Ol @ UlpUg)]

(apply X ® O and take trace)
= % (Tr[OUszlT] — Tr[OUlpU;]) (O Hermitian)
=1Im (Tr[OUszf])
=Im (Tr[OU 1 pU; ]) (By cyclicity of trace)

o

These circuit constructions are necessary and parallel our main results.

3.3.2 Correctness

We now show that the algorithm in Algorithm 1 is unbiased. That is, the expected value of the
estimator over the sampling distribution equals the target quantity Tr[Z fx ,, (A)].

lckbjl

Lemma 20. Let (k, j) be sampled with probability Pr(k, j) = =%, and define

Hy = -sign(cpbj) - Tr [ZPl/sf(sjtk)] .
Then [y is an unbiased estimator of Tt[Z fx m(A)], i.e.,
Elfim] = Tr [Zfx m(A)] .

Proof. Note that as discussing in Equation 12

K m
Tt[Z fim(A)] = Y| Y b Te[ZP (s;10)]
k=1 j

J=1
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We verify that i1y, is unbiased:

Elfiv] = ) Pr(k, j) - Z - sign(cb)) - Tr [ 2P (s ;1) ]
k.j

b
= M - Z -sign(cibj) - Tr [ZSDI/Sf(sjtk)]
k.j <
= Z Ckbj Tr [Zpl/‘g-f(sjtk)] .
k.j

3.3.3 Sample Complexity

We now provide arigorous bound on the sample complexity Cgample required to estimate Tr[ Z fx ,, (A)]
to within additive error £ with high probability.

Lemma 21. Let i1y, be the unbiased estimator defined in Lemma 20, and let [ty = ﬁ > x©
denote the empirical mean of M independent samples. Then, for any confidence level 6 > 0, with
probability at least 1 — 6, the sampling error sy satisfies

_ _ 201211 2)? 2
lium — Eluml]l := sy < € provided M > M -log (5) )
£

Then to estimate to sampling error sy < &, the sample complexity scales as

g2 gg

2.2 2
Coampie = 0(||Z||1c (loglog(1/2))* (1))

Proof. Each sample X (© lies in the interval [—||Z||1Z, || Z||1Z]. By Hoeffding’s inequality, for any
>0,

2M¢g? )
2lzlh2)?)

To ensure that this probability is at most d, it suffices to choose

201Z1h 2Z2)? 2

P[lim — Elpml]l = €] < 2exp (—

&

From the normalization factor bound (see equation (13)),

Z =) lexbj| = O(clogm),

k.j

and since m = O(log(1/¢)), we obtain
Z =0(cloglog(1/e)).

26



Substituting into the bound for M, the sample complexity becomes

Csample = 5

1Z|I3¢*(loglog(1/€))? (1))
-log ,

£2
which establishes the claim. O

3.3.4 Gate Complexity

We now analyze the gate complexity of the Algorithm 1, focusing on bounding the number of Trotter
steps for each instance of P1/57 (s j'ter). The following result follows from Lemma 16.

Lemma 22. Under the assumptions of Lemma 16, to ensure the total Richardson error satisfies
er < g, it suffices to use:

* m = O(log(1/¢g)) Richardson extrapolation points, and

* a maximum Trotter step count of
1
Fmax = 0(10g (c/e) - (amaxY/lcommT)Hp) .
This yields a total gate complexity of

1
Coate = O(F -log (c/e) - (amaxY/lcommT)Hp) .

Proof. We consider the error due to approximating fx (A) by its Richardson-extrapolated product

formula:
K

fx(A) = Z cre™  (from equation 11),
=1

K m
Jem(A) = Z Z ckbjSDI/Sf(sjtk) (from equation 12).
k=1 j=1

Then the total Richardson error is

er = [Tr[Zfx (A)] = Te[Z fie m(A)]] = ch Tr[Ze—fAfk]—ijTr [zPsi (s;10] |-
k=1 j=1

Using the triangle inequality:

K
er < ) lexl - sr (1) < ¢ - er(T),
k=1
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where eg (1) denotes the Richardson error in approximating Tr[ Ze 4% ] by Z’]’?:l b;Tr[ZP s (s iti)],s
and where T := maxy |t;|. To ensure the total error satisfies er < &, it suffices to set

er'(T) < g/c.

By Lemma 16, this can be achieved using

1
Fmax = O (log (c/e) - (amaxY/lcommT)H;)

Trotter steps. Since each Trotter step applies to all I" terms in the decomposition of A, the gate
complexity is

1
Coate = O(F -log (c/e) - (amaxY/lcommT)Hp) .

3.3.5 Final Complexities

We now summarize the overall resource requirements—gate, sample, and classical preprocessing
complexities—for our randomized algorithm to estimate Tr[Z f(A)].

Theorem 23 (Sample and Gate Complexity of Randomized Trace Estimator). 7o estimate Tr[Z f (A)]
with error at most € and success probability at least 1 — 6, the randomized Richardson-extrapolated
Algorithm | requires the following resources:

* Gate complexity (per sample):

c(e/3)
£

1
Cgate = O(F ’ log ( ) : (amaxY/lcomm T(8/3))1+1’) ,

where T := maxy |ty|, and ¢ = ||c||1. Both ¢ and T depend on the Fourier approximation error
er:=¢€/3.

* Sample complexity:

Csample =0

IZII7 - c(e/3)* - (loglog(1/¢))* (1))
-log 51

g2

where ||Z||1 is the Schatten 1-norm (i.e., trace norm) of Z, and again ¢ = ||C||; is determined
by the Fourier truncation at error /3.

* Classical preprocessing time:
Cpre = O(K + log(l/s)),

which accounts for computing the Fourier coefficients {c}, the Richardson coefficients {b,},
and related approximation parameters.
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Proof. Let iy = % Z?i 1 X (©) be the empirical mean of the unbiased estimator defined in Lemma 20.
We can bound the total error as

ITt[Zf(A)] — um| < er+er+espm) < €
where:
* e = |Tr[Zf(A)] - Te[Z f (A)]I,
o &g = [Tr[Zfk(A)] = Te[Z frm(A)]],
o esim) = |Tr[Z fem(A)] = fiu]

We set each fourier = ETrotter+Richardson = Esampling,¥ < &/3 and therefore substituting & := &/3 into
the derived gate and sample complexities from Lemma 22 and Lemma 21, we get

* Gate complexity (per sample):

c(e/3)

&

1
Coate = O(F -log ( ) * (@max Y Acomm T(3/3))1+p)

e Sample complexity:

Csam le = 0
p 82

IZII3 - c(£/3)* - (loglog(1/#))? . (1))
- log .

3.4 Core algorithms

Let us now examine our two primary objectives: estimating the quantities Tr[pf(A)] and
Tr[f(A)pf(A)TO]. We begin with the first case, Tr[p f(A)].

3.4.1 Estimating Tr[pf(A)]

In this setting, the gate complexity per sample remains unchanged from the general case. However,
the sample complexity simplifies due to the fact that || Z||; = ||p]|; = 1. As a result, we obtain:

c(2/3)* (loglog(1/#))?
0 2
&

b

where ¢ = ||c||; arises from the Fourier approximation of f to accuracy £/3. This leads directly to
the following result.

Theorem 24 (Sample and Gate Complexity of Algorithm | for Estimating Tr[p f(A)]). To estimate
Tr[pf(A)] to within error g, with success probability at least 1 — 6, the randomized Richardson-
extrapolated Algorithm | requires the following resources:
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* Gate complexity per sample:

c(e/3)

€

L
Coate = O(F -log ( ) * (@max Y dcomm T(3/3))1+p) )

where T := maxy |t;| denotes the maximum absolute value of the Fourier time parameters,
and ¢ = ||| depends on the truncation error e := /3.

* Sample complexity:

c(g/3)? - (loglog(1/¢))? og (1))

C =0 —
sample ( 82

exploiting the fact that || Z||, = 1, since Z = p is a quantum state.
* Classical preprocessing time:
Cpre = O(K + log(l/s)),

which accounts for computing the Fourier coefficients {cy}, Richardson extrapolation
coefficients {b;}, and other relevant approximation parameters.

3.4.2 Estimating Tr[f(A)pf(A)T0]

Our second estimation task—computing Tr[ f (A)p f(A)TO]—is more involved than the first. We
begin by recalling the Fourier expansions from equation (11):

K K

f(A) = fk(A) = Z cre ik, (A~ kAt = Z cre AN,

k=1 I=1
Using these approximations, the target quantity becomes

K

Tr[f(A)pf(A) 0] ~ Z cre; Tr [eiAtkpe_iAt’O] .
k=1
As in equation (12), each exponential of the form ¢4’ is approximated using an m-term Richardson
extrapolation of a p-th order product formula . This yields the following approximation:

K m

Tr[f(A)pf(A)TOl =~ > > cxeibjb Xiijr,

k=1 j,r=1

where
1/s; 1/s T
Xk,l,j,r =Tr |P ](Sjl‘k)p (P ’(Srl‘l)) of.

This decomposition allows us to analyze the sample complexity, as stated below.
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Lemma 25 (Statistical Error for Estimating Tr[f(A)pf(A)TO] using Algorithm 1). Suppose
||O|| = 1. Then, to estimate

Tr[f(A)pf(A)TO]

to additive error € with failure probability at most 6, the number of samples required is bounded by

c* - (loglog(1/€))* log (1))

C =0
sample &2 5

where ¢ = ||C||1 = Xk |ck|, and we assume ||l;||1 < logm = O(loglog(1/¢)).

Proof. Since ||O|| = 1, each term X; ; ; , is a bounded observable with outcomes in [-1, 1]. We
perform importance sampling over the index tuple (k, [, j, r), with sampling probability proportional
to

Piljr < |ckebjb,].
The variance of the corresponding unbiased estimator is then bounded using the Cauchy—Schwarz
inequality:

L (5]

Letting ¢ = ||¢||; and using the assumption ||E||1 <logm = O(loglog(1/e)), we obtain a variance
upper bound of

> lekeibjb,| 2 < (Zk:|ck)2 (Zm)z

k.Lj.r

0 (c4(log log(l/s))4) .

Applying Hoeffding’s inequality then yields the stated sample complexity:
*(loglog(1/e))* 1
c*(loglog(1/e)) log (_)) ,

C =0
sample ( &2 5

completing the proof. O

As shown in equation (3.4.2), estimating Tr[ f (A)p f(A)TO] reduces to estimating terms of the
form Tr[eA% pe~iA10]. To evaluate such terms efficiently, we apply Richardson extrapolation as
described in equation (3.2), yielding the approximation:

Tr[e A pe™™410] ~ Z Z bjb, Tr lpl/sj(sjfk)/o (Pl/sr(srfl)) 0] .
j=1r=1

where # is a p-th order product formula and {b} are the Richardson coefficients. This expansion
allows us to bound the gate complexity required to estimate Tr[ f (A)p f(A)TO] to within a target
error.
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Lemma 26 (Richardson Extrapolation Error for Tr[f(A)pf(A)TO)]). Let g denote the total
Richardson extrapolation error:

ex = Tr[e™pe ™ A10] = 3" " bb, Tr [Pl/sf(sj‘tk)p (Pl/s’(srtz)) 0] :
j=1 r=1

Then Tr[e" A% pe~iA1 O] can be estimated with error eg < & using gate complexity
1
Ceate = O(F -log(1/€) + (@max Y Adcomm tmax)Hp) ,

where tnax = max{|ty|,|t;|}, and the constants are inherited from the product formula and
Hamiltonian simulation setting.

Proof. We start from the definition of gg:

m m
er = [Tr [eAkpe 0] - Z Z bib, Tr [Pl/sf(sjtk)[) (7ol/s’(srll))Jr 0]

j=1 r=1

i b, (Pl/sr(srtl))T o)
r=1

Substituting appropriately with Z; and Z, so we can call Algorithm | and applying triangle inequality:

m
e_iAtl - Z brpl/sr (srtl))
r=1

m

=|Tr |0 p (e_iA” — Z b, P (s,01))
r=1

m
+Tr eiAt"—ijPI/‘gf(sjtk) p
j=1

er < |Tr|Z; -

m
+ |Tr ijiol/sf(sjtk)—em’k 2|,
j=1

where

. z T
Zi=éMp0,  Zy=p- Y b, (PI/S’(srtl)) 0.
r=1

We now bound the trace norms:

o 1Z1lIh < 1€ - llpllr - |O|l < 1, assuming p is a quantum state and ||O]| < 1.

* For Z;, we apply Holder’s inequality:

1Z2ll1 = ||p - ibr (501/3’(&”))T 0
r=1

1
m

e (sol/Sr(s,t,))T o)

r=1

< 3 15,1+ 101 < 1151 - 101l = O (log m).
r=1

< llpll -

32



Finally, note that while the norm ||Z,||; introduces a logarithmic dependence on m, this dependence
is mild. Specifically, from Remark 17, we have logm = loglog(1/e) < log(1/¢). Therefore, we
may still invoke Lemma 16 to bound the gate depth associated with simulating each product formula
segment. As a result, the total gate complexity required to estimate Tr[e’A’ pe~4% 0] to error at
most & is

1
Coate = O(F -log(1/é) - (amax Y Acomm tmax)Hp) )
as claimed. O

We now consolidate the previous results into a final theorem that characterizes the sample and
gate complexities for estimating Tr[ f(A)p f(A)TO] using Algorithm 1. The structure of the proof
follows directly from the same approach used in Theorem 23.

Theorem 27 (Sample and Gate Complexity of Algorithm 1 for Estimating Tr[ f(A)p f(A)TO]). To
estimate Tr[ f(A)p f (A)T O] to additive error at most & and success probability at least 1 — 6, the
randomized Richardson-extrapolated algorithm requires the following resources:

* Gate complexity (per sample):
c(&/3)

g

1
Ceate = O(F -log ( ) * (@max Y Acomm T(3/3))1+1’) ;

where T (g/3) := maxy |ty| is the largest time parameter in the Fourier approximation with
error /3, and c(&/3) := ||C||1 is the associated €1-norm of the Fourier coefficients.

* Sample complexity:

3)* - (loglog(1/&))* 1
csample:o(c(e/) (g o(1/) .log(g)).

* Classical preprocessing time:
Cpre = O(K + log(l /8))’
accounting for computing the Richardson coefficients {b;}, Fourier coefficients {cy}.

Proof. Letuy = % D 24: | X© denote the empirical mean of the unbiased estimator from Algorithm 1.
We denote the total error in the estimate is |Tr[f(A)pf(A)TO] - ,TIM|
As before, we can decompose this into three contributions (Fourier, Richardson, and sampling):

ITr[f(A)pf(A)TO] - fin| < |Te[f(A)pf(A)TO] - Tr[ fx (A)pfx(A) O]

EF

+|Tr[fx (A)p fx (A)T O] = Tr[ fx m(A) p fx m(A) O]

ER

+|Te[ frm(A)p frm(A) O] = ).

N
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To ensure the total error is bounded by &, we allocate budget equally to each term:
EF, ER, €5 < /3.

Substituting these into the bounds derived in Lemma 26 (gate complexity) and Lemma 25 (sample
complexity), we obtain:

* Gate complexity (per sample):

c(e/3)
£

1
Coate = O(F -log ( ) * (@max Y dcomm T(3/3))1+”) ;

as detailed in Lemma 26.

* Sample complexity:

3)* - (loglog(1/€))* 1
Csample :O(C(S/ ) (Zf Og( /8)) log (5))5

as shown in Lemma 25.

Finally, the classical preprocessing cost is dominated by computing the Fourier coefficients
{ck}, Richardson coefficients {b}, and choosing approximation parameters for the product formula,
which scales as O(log(1/¢)). O

3.4.3 Estimating distributions

Our final task is to estimate a distribution corresponding to the state f(H) |). Specifically, we wish
to statistically approximate the vector Y.z <(o.1)r | (Z| f(H) |¢) |2 |Z.). We remark that this is propor-
tional to the probability distribution that one obtains from sampling the state f(H) |¢) /|| f(H) |¥) ||2
in the computational basis.

In Appendix A6 of [WMB24] the following Lemma is essentially given.

Lemma 28. Suppose an operator G can be decomposed into a linear combination of unitaries as
G = Y; giU;. Using a generalized Hadamard test, we have an algorithm to return a vector v that,
with probability at least (1 — §), satisfies

IF-Gl2 < (14)
using 0(5—; log (%)) samples, where g = Y; |gi|, and each generalized Hadamard test calls two
unitaries from {U;};.

The algorithm can be simply stated. First, we classically construct the probability distribution
pi :=|gil/g. Then, sample two indices (i, j) from this distribution and implement the generalized
Hadamard test in Figure | with U; and U;. Perform a measurement on all qubits in the computational
basis, obtaining an n-qubit string which we denote (z, Z,) € {0, 1}*!. Based on this outcome output
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Figure 1: Generalized Hadamard test.

the vector g2¢; ;(=1)%|Z,) where we denote ¢;; = g;g;/|gig;|. Repeat the sampling procedure and
take the sample mean of all outcomes.

Note that in the previous section we already found a operator G in this form that approximates
f(H) to additive error in operator norm, Thus, application of a triangle inequality allows the
following theorem.

Theorem 29 (Distribution recovery). We give an algorithm for Task (2) with success probability at
least 1 — 6 and

* Gate complexity (per sample):

c(&/3)

g

1
Coate = O(F -log ( ) * (@max Y Adcomm T(3/3))1+p) )

where T'(g/3) := maxy |ty| is the largest time parameter in the Fourier approximation with
error /3, and c(&/3) := ||C||1 is the associated €1-norm of the Fourier coefficients.

* Sample complexity:

Csample = 0(6(‘9/3)4 - (oglog(1/e))* | (1)) |

£2
* Classical preprocessing time:

Core = O(K +log(1/e)).

4 k-local systems

In this section we discuss how to obtain commutator scaling for k-local systems for our algorithms,
as well as other product formula extrapolation algorithms. A key technical tool is a based on an
insight of Mizuta to exploit the fact that the BCH formula can be tightly truncated whilst maintaining
good approximation of Trotterized time evolution [Miz26].

Lemma 30 (Truncated BCH formula [Miz26]). For a k-local system on n qubits with maximum
energy per site g, define the truncated effective Trotter Hamiltonian

_ po(e) .
Heg(t,e) = H+ Z Ejat . (15)
j=1
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If we set the truncation order as po(&) = [log(2n/e)] for some parameter € € (0, 1), then we have

||e—iHeff(f)t _ e_iﬁeff(tss)t” <eg. (16)

The above lemma implies that for an extrapolation schedule {s;}; with coefficients {b;};, the
approximation error can be bounded as

[ Z be~Hen (5T)T _ Z bie Hen T IEINT|| < g, (17)
i i

where § is any given lower bound on all s;, by using a triangle inequality and bounding the
telescoping sum. That is, we can control the error by setting a truncation parameter po(&y5/|| b 1) =
[10g(2n||l;||1 /Sey)]. This will be useful to us as it means we only require knowledge of error
operators to bounded order po(&¢S§/ ||l;|| 1), and allows us to avoid divergences in the extrapolated
commutator factor. Specifically, for any error parameter € we can simply repeat the same analysis of
Lemma 10 for Heg(z, €) and obtain an error series

o-iHer(sT.8) _ ,~iHT _ Z STE (T, &), (18)
]'EO'Z+ZP

with error operators now of the form

} Li/p] . 1 51 s-1 L .
Ej+] (T’ 8) = Z T]+l / dS] / ds2_ .. / dsl Z (n el(s’(_l_sK)THiEjK_'_]) elS[TH ,
1=1 0 0 0 k=l

P<J1--ji<po(e)
€0Zy

Jrtti=)

Li/pl I l (,K+1) Lj/p] (s€) \ i+
= i (amax YT) @comm (amax YT Acomm)’
IEj1 (T, 8)l| < (amax YTY ) ~20 )" ﬂ
| 2 !
=1 B e G Nkt Ux D) =1 .
€0y
J'1+~?-+j1=j

(19)

where 2%9)__is defined as

[ a(jk+1) ﬁ
Alohm = sup >, (]_[ ﬁ)) . (20)

2
jeoZyzom \ . T ( -1 (.]K+ 1)
- <Jj1..-j1<po(e)
1<i<ly/p) PENGIEE
Jit+fi=]

Lemma 31. For a k-local Hamiltonian H on n qubits with maximum on site energy g, we have

Aim = O (kg(pA'” +10g(n/2)) ) . e
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Proof. The analysis is identical to that found in [Miz26, Lemma 5], and we provide a proof here for
completeness. For k-local systems, we have aééfnm < (j = 1)!(2kg)’~'A [Chi+21b]. Thus, we can

write
[ (Ji+D) [
a ' .
>, (H e .°j“f1“)2) < ) (ﬂ (e = 2)!(2kg)*A/g (22)
p<ji--Jispo(e) \k=1 Jx p<ji--Jispo(e) \k=1
€0y €0y
Jitetji=j Jitetji=j

IA

l .
> [ (ereiare )" 23)

P<ji-.Ji<po(e) k=1

€0l
Jitetji=j
. J+l
< ( max (2kgj'(/\/g)1/] )) Z 1 (24)
P<j'<po(e) J1e.j120
Jitetji=j
. ‘ JH
< (4kg)1+l ( max (]/(A/g)l/] )) (25)
P<j’<po(e)

where in the final line we have used the stars-and-bars formula to bound the sum by (j 7:1) < 2/,

The function x(A/g)'/* monotonically decreases in x for all 0 < x < log(A/g) and increasing for
x > log(A/g). Thus, we have

max (/(A/9)""7') < max {pAV?, po(2) A9} = 0(pAlP + po(2)) . (26)
p<j'<po(&)

due to the fact that A < ng and x'//°8* = O(1). Putting everything together, we have
Alimm < 4kg(PA'? + po(e)). 27)
as required. O

Lemma 32 (Generic Richardson extrapolation error for time signal, k- local). Let P be a staged pth
order product formula of symmetry class o, where o = 2 if P is symmetric, 1 otherwise. For a
target evolution time T let

m m
Pym(T) = > bP 5 (sT) = 3 byeHer)T (28)
k=1 i=1

denote an m-term Richardson extrapolation, with ascending sequence of Trotter stepsry = 1/sy € Z,,

which cancel the powers s7, s20 . s7m=D " We consider a Hamiltonian which assumes the

conditions of Lemma 10. Then, the error in the extrapolation of a Trotterized time signal, as
compared to an exact time signal, satisfies

. - A 7 om
| Trlp(P(T) = )| < 4B ™) (s10ma YA VT ) 4272
for any quantum state p, where ||l3||1 = 2« |bk|, and § is a lower bound on all sy.
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Proof. Set the truncation parameter as po(g’) = po(s§/2||l;||1) = [log(4n||l;||1/§s)'|. The extrapol-
ation error takes the form

Tr[p(Pymn(T) = e )] = > bellRo(n1) (T, 51 &) (29)
k=1

where Ry (,-1)(T, sx) denotes the Taylor remainder of degree o-(m — 1) which takes the form

Rom-)(T,51) = > siEji(T, &), (30)

JEOZy
jzom

for each inverse Trotter step si. The size of this is bounded as

||R0'(m—1)(T’ Skag,)” S Z S£ ||E~]+1(Ta 8,)”
jeoZy
j=om

) (&) J+l
Li/p) (amaxY/lcommT)

SZS{CZ 1 ,

jeoZy =1
j=om

where as before we have used Lemma 10 and denoted A;; as in the statement of this Lemma.

As Agf);{m is independent of the extrapolation index i, we can proceed as before and bound the
extrapolation error simply as

| Te[p(PRT) = | < 1Bl - |Ror ey (T s1)|| < 41151177 (51max Y dcommT) ™™

on the condition that s;(amax Y AdcommT) /P < 1/2. Finally, one can check that setting &’ =
£5/2||b||; guarantees that the truncation error is bounded as

”pl(){;)l(T) _ Z bl.e_iﬁeff(siTs3§/2”b||l)T” <e/2, (31)

i
and the statement of the lemma follows by a triangle inequality. O
The above lemma allows us to repeat prior analysis with /l((:f)‘fr{i”b”l) for k-local systems in place

of Acomm- In the case of compiling time evolution, we have § = poly(n, g, T, 8_1) (note that A < ng).

se/2 Z —_~
Moreover, we have /lgf,fn/m” 1" < A4 1ocal, Where

Ttoca = O(kg (PAY? + g log(ngT/2))) .

Further, when compiling other functions 7 is simply taken to be the maximum time parameter
of the Fourier series, and an additive term of g loglog(c(&/3)) is inherited for the Fourier weight

c(e/3).
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S Fermionic systems with fixed particle number

In many quantum simulation settings (such as electronic structure problems and lattice fermion
models) the dynamics are confined to fixed particle-number subspaces. That is, the Hamiltonians
and observables of interest are number-conserving, mapping r7-fermion states to other n-fermion
states. This constraint enables a more refined error analysis when applying Algorithm 1 if the state
in question is of well-defined fermion number. Specifically, we introduce the fermionic r-seminorm,
which is effectively the operator norms projected to an n-particle sector. This seminorm often yields
significantly tighter bounds for Trotter and extrapolation errors, as the relevant nested commutators
typically have much smaller fermionic seminorms than their full operator norms. As a result,
the gate complexity of simulation algorithms can be reduced by conducting the error analysis in
terms of fermionic seminorms, using improved constants aégr)nm < @comm established in recent
works [MCS22; SHC21; Low+23].

5.1 Closure under Fermionic Seminorm

We work in a fermionic Fock space with fixed particle number sectors labeled by r. For any operator
X that preserves particle number, we define the fermionic n-seminorm:

X
WAL )
(i) |éa) ”'7077” ' ||¢T]||

where |y,,) and |¢,) are n-electron states. This seminorm quantifies the action of X restricted to the
n-particle subspace.

Lemma 33 (Fermionic seminorm as a projected spectral norm). For any number-preserving operator
X, the fermionic n-seminorm satisfies

X1l = max [(¢y]X[n)| = [ XTL,]|,

n vl n
where I1,, is the projector onto the n-electron subspace.

We now collect closure properties of number-preserving operators, which will be critical in
bounding errors using the n-seminorm.

Lemma 34 (Closure under products). If A and B are number-preserving, then AB is also number-
preserving.

Lemma 35 (Closure under linear combinations). If {X,,} are number-preserving and c,, € C, then
Yom CmXm is number-preserving.

Lemma 36 (Exponentials of number-preserving Hamiltonians). Let
. — S N
N = Z a(U’y)a(U,y)
vy

be the total number operator. If H = Y, Hy is a Hamiltonian with each H; number-preserving, then
for any real 0, the unitary €' is number-preserving.
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Lemma 37 (Commutators preserve particle number). If A and B are number-preserving, then so is
[A, B] :== AB — BA. More generally, any nested commutator of number-preserving operators is
number-preserving.

Lemma 38 (Error terms preserve particle number). Let E j+1.k (T) be defined via finite products and
nested commutators of number-preserving local Hamiltonian terms {H;}. Then each E 11 x(T) is
number-preserving.

Proof. By Lemmas 34, 35, and 37, number-preserving operators are closed under products, linear
combinations, and commutators. Since each E .1 x(T') is constructed from such operations on {H},
it must also be number-preserving. m|

5.2 Bounding with Fermionic Seminorm

Having established the essential closure properties of the fermionic seminorm, we now leverage this
structure to derive tighter bounds on the coefficients in our error series expansion—and, ultimately,
on the gate complexity.

Lemma 39 (Fermionic Error Formula with n-Seminorms). Let P be a staged pth order product
formula. Assume all operators, including time-evolution operators, commutators, and effective
Hamiltonians, are number-preserving. For any s € R, define

P(l‘) — e—ifHeff([)

as the approximate evolution operator over total time T € R, with Trotter step size t = sT. The case
s = 0 is defined via the limit.
Suppose there exists J € Z, and C € R, such that

sup i (amax Y1sT]) < C,
i=zJ

where amax ‘= Max, y |a(y,y)|, and Y bounds locality or support size.
Define o =2 if P is symmetric, and o = 1 otherwise. Then for any K € Z,, the approximation
error in P35 (sT) compared to the exact evolution satisfies

tr [p (?I/S(ST) — e'iHT)] = Z s/ tr [p Ej+1’K(T)] + tr [p Fx(T, s)] ,
j€0'Z+2p
where the fermionic seminorms satisfy the bounds

min{K-1,|j/pl} 1 (JK+1)

(Amax YT)’ Z (amax YT)' Z l_[ @yj-comm

|E 1.5 (Dl < ’
, ' .
=1 I J1sesJIEOCZLZp K= (JK + 1)
Jittji=j
K (]K+1)
~ Amax YT)X .
| Fx (T, 5)|l, < % Z (Amax YsT)’ Z n ¥y conllrn2
. JjeEoZi2Kp J1se- ,jKEO'Z+>pK (] + )
Jite+jk=]
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Define the scale parameter

1
T+
l (Jx+D)

Tlseens jle0'Z+>p k=1
S+ fi=]

Proof. Recall from [WW24b, Lemma 3] that a pth-order staged product formula has an error
operator

A(s)= > Epa-(sTY,

JEOZy2p

where all E; are number-preserving operators, and o = 2 if # is symmetric, 1 otherwise.
Using the variation-of-parameters formula, we recursively expand the approximate time evolution
operator e'THeir(s) ag;

o THeir(s) — ,iHT

K-l o7 7| T-1 ) )
+Z / dt / dry - - / dr & T™HGA(s)) - - - (iIA(s)) e
= J0 0 0

T TK-1 i .
+ / e / drg & T"H(A(s5)) - - - (iA(s5)) e K Her ()
0 0

By Lemma 38, all time-evolution and commutator terms preserve fermionic number, so the entire
expansion preserves it.
Expanding each A(s) into its power series,

l

K-1 T T-1 . . . ; i
dty - - / dr (ST)J1+~..+][ el (Te-1=T)H; | . lelHTz — S E: 1.x(T),
; /0 0 Z 1—[ Jxt Z Jt+

J1se-sJIEOZy 2P k=1 JjeoZizp
where 7y := T and

mm{K LLj/pl}

E].;.LK(T) = Tj+l/ dSl / Z l_[ l(SK 1— SK)THZE lslTH.

Jittji=j k=
Ji€0Zyzp

Using the unitary invariance and submultiplicativity of the fermionic seminorm, we get

mln{K Llj/pl}

1k (Tl < T / asiee [ ]_[nEwnn

Jit+ji=j k=
mm{K ILJ/pJ}

<7 Z s ﬂnE,mnn

=1 ! Ji++ji=] k=
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Using the effective Hamiltonian error expansion bound

i+1
(j+1) (amax Y)’*
||Ej+1||r] < C(])mm (j+1)2
we conclude

min{K-1,1j/p]} I (JK+1)

( max comm
2 - [

2"
Jite+ji=j k=1 (J + 1)

IE 1.6 (T)|ly < (amax YT)

For the remainder term Fx (T, s), applying the triangle inequality and unitarity,

K
. TK TK .
1T )l < 2 IAGIE < | 3 1Esmlly (67
’ ’ JEU’Z+ZP
TK

K
== 2 60 Y [ IEl,

j€oTZ>Kp Jit+jk=j k=1
K (J +1)
(amaxYT)K _/ 77 gomm
<lmdDN S vy 3 [
' jeoZi=Kp J1++jk=J k=1 (‘]K+ )

O
Theorem 40. For fermionic systems, choose the largest inverse Trotter step number s| such that

such that s1amax Y ApcommT < 1/2. Define n := max{l, aymax YT Aycomm}. The m-term Richardson
extrapolation error for a staged pth-order product formula of symmetry class o is bounded as

|Tr[p(501552(7’) —-€ IHT)” < 4”5”1 U[Um/p] (SlamaxY/ln-wmmT)a-m

Proof. Assume that our state p exists in the 77 electron space, therefore p = p [],,. Note that we can
set

Tr[pIL,E ju1 k (T)] < ITE 1 (Dllsollolh = 1T Eju1 k(T lleo = IE 1,5 (Dl
Tr[ I, Fie (T, $)] < I, Fx(Dllwllplls = 1T, Fx (T, 5)lleo = [1Fx (T, 5) Il
where the inequality is due to the Holder’s trace matrix inequality. Since we can bound
Tr[pT, Eji1 x (T)] < |Ejr1x (Dl
Tr[pIL, Fx (T, $)] < |1Fk (T, 5)lly
we can use the bounds provided in Lemma 39 and the same techniques from Lemma 12 to obtain

|T1‘[p(7)]g{2(T) - e_lHT)” < 4”[_;”1 U[(Tm/p] (SlamaxY/ln—commT)a-m
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Given this final form, we can now substitute the recently derived bounds on a;comm to obtain
tighter guarantees than those available for more general systems. In particular, the work of [Low+23]
provides the following sharp error bounds for Trotterization in the context of fermionic Hamiltonians:

Lemma 41 (Trotter error with fermionic induced 1-norm scaling ([Low+23], Theorem 4)). Let
H=T+V = Zj’k Tj’kAthk + 2. VimNiNy, be an interacting-electronic Hamiltonian, and let P
denote a pth-order product formula that splits the evolution under T and V. Then,

[P0 = ]|, = O ( (el + Il )™ Wl Il gy 727

Here, the (restricted) fermionic induced 1-norms are defined as

:maxz Tikls = max max (V' +---+ |V )
el = max D eyl Wbl = max, mas (1l +-

6 Partially Randomized product formulae

We now apply our Richardson extrapolation framework to the partially randomized product formulae
introduced in [Giin+25], which combine the structure of deterministic Trotter formulas with
randomized simulation techniques.

6.1 Motivation and Prior Work

Randomized techniques have proven useful in Hamiltonian simulation, especially for mitigating
worst-case behavior in certain settings [WBC22b]. However, for a Hamiltonian H = Zirzl H;, fully
randomized methods tend to scale poorly with the inverse error £ ™! and the total norm A = Zl.rzl || H;].
On the other hand, deterministic product formulae often scale poorly with I', the number of terms.

To leverage the advantages of both approaches, we consider a hybrid scheme in which part of
the Hamiltonian is simulated deterministically and the remainder is handled using randomization.
Specifically, we adopt the decomposition proposed in [Giin+25]:

La M
H= Z H + Z Bon P, (32)
=1 m=1
N— i N ——— —
Ha Hp

where H, is treated deterministically and Hp is simulated via randomized techniques. Each P,, is
assumed to be a Hermitian unitary (e.g., a Pauli operator), so that P2 = 1.
This decomposition is designed to satisfy:

M
Ap = Z |hy| <A, and Ljp < M,

m=1

where A = ZIL:A] || H;|| + fozl |h,,| s the total 1-norm of H. Intuitively, this ensures that most
of the Hamiltonian’s norm resides in the smaller, randomized component Hp, while keeping the
deterministic portion H,4 lightweight.
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6.2 Gate Complexity Improvement

The partially randomized framework leads to a favorable gate complexity bound when combined
with higher-order product formulae. The key result from [Giin+25] is summarized below.

Lemma 42 (Gate Complexity of Partially Randomized product formulae [Giin+25, Theorem V.1]).
Let H= Hy + Hp be decomposed as in (32), and suppose a pth-order product formula is applied
over r steps with step size t =T [r, where

r= 0((@55;12 l/me/ps_]/p) :

Then the total gate complexity is
O(rLa+237%).

The first term corresponds to the deterministic simulation of H s using product formulae, while the
second term arises from approximating the randomized evolution e''®' via a truncated Taylor series.

6.3 LCU Decomposition of Randomized Taylor Expansion

Before we introduce how we use Richardson-extrapolation for our partially random circuits, we
share a useful lemma that allows us to estimate time evolution operator as a linear combination of
random unitaries. This result of this lemma is used in Algorithm 2. The is the core lemma that the
partial randomization approach exploits.

Lemma 43 (Approximate LCU decomposition via Randomized Taylor Expansion of Time Evolution
([WBC22a], Lemma 2)). Let H = }; hx Py be a Hermitian operator, where Py are Pauli operators
and hy are real coefficients. Define A := )} |hi|. Then, for any time T > 0 and any integer d > 1,
the truncated Taylor expansion of e to order d can be written as a Linear Combination of

Unitaries (LCU) of the form:
d .
(iHT)"
Z rl p Z 1)
r=0 J

where:
* {q;}; is a probability distribution: q; > 0and },;q; = 1.

* Each U; is a unitary consisting of a product of at most d Pauli operators (i.e., U; = Py, -+ - Py
withr < d).

r

. . . 272
* The normalization factor B satisfies 5 < exp (’%)

We now describe how to apply Richardson extrapolation to partially randomized product
formulae, and show that (similar to Algorithm 1) this improves the error scaling from £~'/? to

log(1/e).
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To maintain notational consistency throughout, we define the partially randomized product
formula S ;/ *(1) (as opposed to P from before) corresponding to a decomposition of the Hamiltonian
H into {Hl}lL:A1 U {Hp}, where the total simulation time is # = sT and T is the target evolution time.

In this notation, we write:
Ly
st = (n H) e,

I=1
We also define the m-term Richardson extrapolated approximation of the full evolution as:

SNT) = b SV (s,
k=1
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Algorithm 2 Richardson-Extrapolated Partially Randomized Product Formulae

1: Input:
e Hamiltonian H = ZIL:Al H + ZZ’:] h,, P,
* Richardson step sizes {s¢};_,
* Richardson coeflicients {b;}]"_, such that: Tr [ZSI(,{Q,;(T)] =20 bi - Tr [ZS (skT)]
* Total simulation time T

2: Output: Approximation Yy to Tr[Ze *#T] within error &

3: Initialize Ygum < O
4: fori=1to N do

5: Sample k; from the distribution {%} where b = 377", |bi|
6: Setr « i, 0 «— %, and construct P (8) using H 4
2 t2

2
Sett<—sk,.T,d<—BT,andT<—§

8: for j=1tordo
Use randomized Taylor expansion from Lemma 43: e/8" ~ 8(1)¢ Y, G W

10: Sample W,, from the distribution {'qq—’”}
11: Construct a Trotter step using $(6) and sampled W,

12 end for
13: Let Sk, be the full r-step circuit built from $(§) and W,
14: Run Hadamard test circuits to estimate:

* Re [Tr(ZS(s,T))] — X € [-1,1]
o« Im [Te(ZS(si,T))] — X\ € [-1,1]

150 Let X0 e x@ 4. x

16: Set Y « X .sign(by,) - b
17: Update Yyum < Yeum + Y@

18: end for

19: Return: IA/N = %Ysum

Theorem 44 (Extrapolated Partial Randomization). Consider a matrix decomposed as H = Hy+ Hp
as in Eq. (32). Let Adcomm be the commutator bound corresponding to the decomposition of H into
{HI}IL:/"1 U Hp and let Z be an operator with bounded Schatten-1 norm || Z||; < 1 such that Tr[ZU]
is implementable via a Hadamard test given (controlled) U. Then, using Algorithm 2 we can obtain
an g-additive approximation to Tr[ Ze "HT| with the following resource complexities:

* Circuit samples:

Coumpte = O (loglog(1/¢))? log (%)) ,

g2
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* Gates per circuit:

~ 1
Coate = O(LA (amaxY/lcommT)Hp log (1/¢e) + /1129T2) .

Proof. Let Yy denote the empirical estimate returned by Algorithm 2 after N samples. The
expectation of this estimate is

E[fy] = Tr [z S,Eff;(T)] .

We decompose the total error into sampling g and Richardson error gg:

ITr[Ze 7] - Py | < ’?N ~Tr [z 3,2{2(T)] ( + ’Tr [z S},{f,l(T)] ~Tr [Ze'iHT]‘ .

&S ER

To guarantee overall error at most &, we set: €5 < £ R < ;
Sample Complexity. We estimate Tr[ Ze~"#T] using an m-term Richardson extrapolation:

Syn(T) = Y bi S(siT),
k_

where each S(sxT) is a product formula for the Hamiltonian decomposed as Hj, ... Hy,, Hp and
by are extrapolation coefficients. With each iteration of the loopi = 1... N, Algorithm 2 samples
X® Y@ where:

« X is the sum of two Hadamard tests corresponding to the unitary circuit S (s .T). Therefore
mathematically we get that E[X®] = Tr[ZS (s, T)]

o YO =sign(by) - b- XD,

« Therefore for the final the outputted Yy, we get that

S 16l 0] m_k N _ (R)
; CE[Y ; ~Elsign(by) - b - X ]_;kar[ZS(skiT)]_Tr[zs,,,m(T)]

By Hoeffding’s inequality, to ensure that
P(|Yx —E[¥y]| = £/2) <6,

Now consider |Y*)| < M := b < O(loglog(1/¢)). it suffices that:

N>2M21 2
— 10 1.
g2 gé
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We now bound M. By Lemma 13, the sum of extrapolation weights satisfies b := }}; |bx| =
O(logm) = O(loglog(1/g)). Thus:

M < ||Z]| - b = O(logm) = O(loglog(1/¢g)).

So the sample complexity is:

loglog(1/¢))? 1
Csample = 0(( = Oii /8)) lOg (5)) .

Extrapolation error. By Lemma 16, the total observable error from the staged partially randomized

Trotter formula satisfies: _ c
‘Tr[Ze_’HT] - Tr[ZS},fi),(T)]‘ <3

provided that each stage uses at most r; < ryax Trotter steps, where:

1
"max = 0((amaxY/lcommT)l+p 10g2 (1/8)) .

Gate complexity. Lemma 42 says that for a given Trotter circuit S(sk,7) obtained in step i of
Algorithm 2 composed of ry, trotter steps, we get a gate complexity of O (ry, L + /l%TZ). Thus, the
worst-case gate complexity of the algorithm (per quantum circuit) is:

~ 1

6.4 Commutator Bound

Note that the decomposition for partially randomized circuits S has a different commutator factor
@comm (compared to P and @comm from before). This introduces a new Acomm When analyzing the
partially randomized product formulae extracted from Richardson, which is analogous to the A¢comm
of the product formulae extracted from Richardson. We provide a bound for this new commutator
factor Acomm

Lemma 45. Let H = H4 + Hp, where Hy = ;o4 H; is the deterministic part and Hg = ) ;cp H;
is the randomized part, so that H = },;caup Hi- Let @comm be the nested commutator factor
computed over a grouped decomposition of Hg, where each group is I:I7 =D s, Hi with S; € B
and Uy Sy = B (as in equation (32)). Let Acomm be the resulting error bound from applying
Lemma 11 using &comm- Let Acomm be the error bound from applying Lemma 11 using the ungrouped
decomposition H = Zirzl H; (withT = |A| + |B|). Then

Acnmm S /lcomm .
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Proof. We compare the nested commutator factors aé{,inm and aéégnm for fixed order ;.

Let H' := {H;};caup be the ungrouped decomposition of the full Hamiltonian, and let the j-th
order ungrouped commutator factor be

) = Z I[Hiy» (Hiy - -, [Hi,  Hi -]
i],...,ijEAUB

Now consider the grouped decomposition of Hg as Hy := 3 ;. s, H; for disjoint or overlapping
subsets Sy C B such that ; S5 = B.
Define the grouped commutator factor as:

&égzrlm = Z ”[ ~)71’ [I:If’z’ R [FI)N’]‘—I’H)N/J‘] .. ]]”

Now expand each Hj; in terms of the H;:

Hy, = Z H;, foreachk=1,...,].

ikESyk

Then, by multilinearity of the nested commutator and the triangle inequality:

||[~')~’1""’FI3~’1‘]|| Z H;,, Z H;,, ..., Z H,'j

l'1€S)71 i2€S372 l'jESyj
< e > N i TH H D
i1€83, ij€Sy;
Summing over all group index tuples (¥1,...,7¥;), we get:

Gm < ) Hips [Hiys . [Hiy Hig L 1] < @

That is, the grouped commutator factor is bounded above by the ungrouped one.
Since the error bound A¢omm 1S @ monotonic function of the commutator factors (e.g., as in
Lemma 11, the bound is linear or polynomial in aééznm), it follows that Acomm < Acomm as required.
O

7 Application: Phase estimation

In this section, we explore a method for phase estimation that involves computing the cumulative
distribution function (CDF) of the eigenvalue spectrum of a Hamiltonian H. This CDF can be
formulated using the Heaviside step function, which we approximate via a Fourier series expansion
over the interval [—m, 7]. Consequently, it is necessary to rescale the Hamiltonian such that its
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spectrum lies within this interval. We define the normalized Hamiltonian as H := kH, where the
scaling factor « will be specified later. Throughout this section, we assume the existence of a known
upper bound K on the spectral norm of H, meaning K > ||H||.

The primary quantity of interest is the cumulative distribution function associated with H, given

by

Cx) = (p*O)(x) = Te[p O ~xH)] = ) TrlpIL].

x>kE;
where ©(x) is the Heaviside step function, p(x) = >; Tr[pll;] 6(x — kE;) represents the
probability density function corresponding to p and the normalized Hamiltonian A, and * denotes
convolution. Here, I1; is the projector onto the eigenspace associated with the i-th eigenvalue of H,
arranged in increasing order. We also define n = Tr[plIly] as the overlap between the ground state
and the ansatz state.

7.1 Heaviside Approximation and Approximate CDF Construction

To get these necessary coefficients and time signals, we first present a useful Fourier series
approximation to the Heaviside function valid in the domain [-n, 7].

Lemma 46 (Heaviside Fourier series [WBC22b] Lemma 1). There exists a Fourier series @(x) =
2jes ©;e* with S := {0} U {x(2j + 1)};.12O and maximum "time parameter” scaling as d =
O(u"'log (8;1)) where ef is our Fourier error, which satisfies

1. |(:3(x)—®(x)| <er Vxe€|[-m+u,—ulUlu, m—ul, whereu € [0, /2] serves as a resolution
parameter.

2. —ep <1OX)| < 1+&r VxeR
3. 18Il := Zjes, 18,1 = O(log d).
We use this Fourier series to construct an approximate CDF which we denote as
C(x) = (p=O)(x) = Z @,/ P(y)e /) dy = Z i:)_,-e"j’C Tr [pe'inH] = Tr[p@)(xl - kH)].
jes - jes

The following lemma ensures that this Fourier approximation gives a reasonable approximation to
our desired cumulative distribution function.

Lemma 47 (Approximation to CDF from Fourier series, adapted from [WBC22b] Proposition 12).

Take ©(x) in Lemma 46, and set k = 7. Then, the quantity C (x) = Tr[p®(xI — kH)] satisfies

Cx—u)—ep <C(x) < Cx+u)+ep
We observe that the probability density function is defined over the interval [-«K, kK], which
lies within the range [—%(71 - u), %(ﬂ' —u)]. This choice of support is necessary to guarantee the

error bounds established in equation (47). From this point onward, we fix the normalization factor
as k = 5z to ensure that this lemma remains applicable throughout the analysis.
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7.2 Ground State Identification via Approximate CDF

Next, we demonstrate that the ground state energy can be characterized by a condition on the
approximate cumulative distribution function (CDF), allowing us to use the approximate CDF as a
tool to determine the ground state energy.

Lemma 48. Suppose we have an algorithm to approximate C (x) to precision n/8 for some
0<u<n/2 er=n/8andforany x € [-n/2,n/2]. Then we may determine whether

Clx+u)>n/2 or Cx—u)<n.

Suppose further that we locate an x* that simultaneously satisfies both conditions. Then, we have
that
[x*/k = Eol < u/xk,

i.e., we have an additive estimate to the ground state energy E.

Proof. We use the algorithm to determine whether C (x) > 3n/4 or not. Within the specified
precision, we can guarantee either

C(x)> (5/8)yn or C(x)<(7/8)7,

which respectively implies either C(x +u) > /2 or C(x — u) < n respectively by use of Lemma 47,
and we have satisfied the first claim. Now we suppose both conditions are simultaneously satisfied
for some x*. We recall that < Tr[IIpp] lower bounds the ground space overlap. We additionally
note that the exact CDF C(x) cannot take values in (0, Tr[IIpp]) 2 (0,7) and so we have that

C(x"+u)y=n CH'-u)=0,
— x"+u>«kEy, x"—u<«cE.

Thus, |x* — kEg| < u. O

Next we present an algorithm and lemma showing that the search algorithm can locate x* using
only a logarithmic number of queries to the approximate CDF C(x).

7.3 Binary Search for the Ground State Energy

Lemma 49 (Binary search with approximate CDF). Suppose that we have an algorithm A(x, &, €, 6)
which evaluates C(x) for any x to additive error € and success probability at least (1 — 6), for
er = n/8 and some resolution parameter u € [0, w/2]. Then, the ground state energy can be found
to additive precision u/k and success probability at least (1 — ) by running A(x,0.9u,n/8,6/L)
at L = O(log(1/u)) different values of x.

Proof. The contents of [LT22, Section 5] prove this statement, but we present it here for completeness.
We see from Lemma 48 that setting £ = 17/8 allows us to determine the criterion (48) (with some
success probability to be later addressed and some resolution parameter). We first show how to use
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this to search for x*, before discussing how to tune the success probability. The search procedure
operates by finding successively tighter upper and lower bounds to x*. Set

xX00 =-m/2, x10=m/2,

where we have that C(xg0) < n and C(x19) > n/2. We now specify an update rule to generate
(C(x0,), C(x1,)) that have decreasing separation for increasing ¢, but still satisfy C(xo ) < n and
C(x1¢) > 1/2 (recall that as C(x) cannot take values in (0, 7), we have xo, < x* < x1 ). For all
¢ > 0 until termination, first construct x, = (xo¢ + x1¢)/2. Second, run A(x¢,0.9u,7/8, $) (note
the prefactor 0.9 for the resolution parameter can be arbitrarily chosen to any number smaller than
1). Due to (48) this determines whether (i): C(x,+0.9u) > n/2 or (ii): C(x; —0.9u) < n. We now
apply the following update rule based on the outcome

(1) : X0,0+1 = X0,¢ 5 X141 =x¢+09u,
(i1) : X041 = x¢ — 0.9u,, X141 = X105

and it is simple to check that the conditions C(xg¢) < 17 and C(x;¢) > /2 are satisfied, and that the
separation x1 o — xo ¢ is decreasing with increasing £ so long as x1 , — xo, > 1.8u. We terminate the
procedure at step L when x1 ¢ — xo¢ < 2u, as this implies that |x;, — kEg| < u. Then, x1 /« satisfies
our desired approximation of the ground state energy Ep. One can check that the separation satisfies

and thus L = O(log(1/u)) evaluations of A(x¢,0.9u,n/8, 6) are sufficient.

Finally, let us determine a sufficient success probability 6 for the algorithm that evaluates C (x) If
each use of A(x,0.9u,n/8, 6) fails with probability at most 8, then in L uses the failure probability
is at most Lo. Our stated claim follows by requiring that this equals our desired overall failure
probability LS = 6. O

Our last piece to construct a full phase estimation algorithm is to specify the algorithm
A(x,7,8,06) to evaluate C(x). Observe that we evaluate C(x) statistically via our randomized
quantum algorithm 1, where compilation is applied on the Heaviside function ®. Through this
algorithm we use the extrapolation strategy of Lemma 13, which uses extrapolation coefficients
{by}x with accompanying product formulae {Tr[pP/** (s, T)]}« using {1/sy }x Trotter steps.
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Algorithm 3 Randomized Estimation of Approximate CDF via Fourier—Heaviside Expansion

1: Preprocessing: Compute sampling distribution {%} for j € S,k =1,...,m, where
Z=2110;bgl

2: for i =1 to Csample do

3 Sample (j’, k') ~ distribution, T « «-j’

4: Construct quantum circuit for P/« (54 T)

5 Prepare Hadamard tests to estimate real and imaginary parts:

6 X&) = Re[Tr(pP v (s 1)1, X = Im[Tr(pP /5% (54:T))]

7

Im
: Measure each circuit once; set Z\) = Xl(z]; ) + iXI(n]:1 )
8. CO o]y - |©ll; - sign(bpO;) - € - ZD
9: end for _ o
10: Return: C(x) = ~—— Y™ C()

Csample i=1

Similar to our randomized Algorithm 1, this algorithm is structured into two main parts: a
quantum component (Step 6) followed by classical post-processing (Step 8). While we may want to
evaluate the algorithm’s output A(x, u, €, 6) at multiple values of x, it is important to note that the
quantum step does not need to be repeated for each x. Instead, we can run the quantum step once,
record its outcomes, and then apply different classical post-processing (Step 8) corresponding to
each desired x. As a result, obtaining outputs for L different values of x requires only a single round
of quantum measurements, with all additional computation handled classically.

Lemma 50. Algorithm 3 implements the procedure A(x, u, €, g), preparing a g-additive approxima-
tion to the approximate CDF C(x), with Fourier parameters u and e = n/8, and overall success
probability at least 1 — 5.

The algorithm uses the following resources:

. _ 1+1/p . . 3
Cgate = O(F (amaxY/lcommKu ! log(n 1)) - log (8 ! log (u : log(n 1)))) s

log log(8™") - log (@' log(n~1)))* 1
Compie = ((og og(g71) (;i(u og(n™"))) -log( ))’

where Csample denotes the number of quantum circuit repetitions, and Cggze IS the maximum depth of
any individual circuit.

Proof. Algorithm 3 applies the randomized estimation primitive from Algorithm | to the smoothed
Heaviside function ®, which amounts to estimating

C(x) =Tr|p®(xI - kH)| = Tr[Zf(A)] with Z = p, f(A) = O(xI — kH).

We apply Lemma 23 using the following parameters:
* ||Z]|1 =1 (since p is a density matrix),
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* Fourier parameters u and e = 11/8,
* target additive error €. B
From Lemma 46, the Fourier approximation of ® has:

d=0(@ "log(1/m), ¢=8l=0(og(@ 'log(1/n))), T =xd=0(ku "log(1/n)).

Substituting into Lemma 23 yields:

loglog(&~") - log(~"log(n")))’ 1
Campe = ((og og(g71) (;gz(u og(n™"))) -log(—)),

)1+1/[7

Ceate = O(F (amaxY/lcommK’/T_1 10g(77_1) -log (5_] log (ﬁ_] log(n_l)))) .

O

The lemma establishes the correctness and resource costs of the approximate CDF estimation

procedure implemented by Algorithm 3. We now leverage this subroutine within a binary search
framework to efficiently estimate the ground state energy, as detailed in Algorithm 4.

Algorithm 4 Binary Search for Ground State Energy Using Approximate CDF

*®

9:
10:
11:

12

13:

Input: precision u/«, resolution u € [0, 7/2], threshold 7, failure probability ¢, subroutine
A(x,u,g,06) (Alg. 3)

Output: estimate E( such that |Eo — Eo| < u/k with probability > 1 — ¢
Sete «—n/8,u « 0.9u, L « [log,(7/u)],d <« 6/L
Initialize: xp0 < —7m/2; x10 < /2 > C(x00) <1, C(x10) >n/2
for{=0toL —-1do
Set x; « L
Run A(x¢,u, €, g) to check:
* () C(xe+u)>n/2 or (i) C(xe—u)<n
Update:
X041 < X005 Xiq1 < Xp+u  if (i)
X041 ¢ X — U5 X141 X1 if (id)
if x1 041 — X041 < 2u then break
end if
end for
X +x
: Setxp «— =k,

return £y «— x; /k

Theorem 51. The ground state energy estimation problem can be solved to precision € and with
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success probability at least (1 — 0) using the above algorithm with resources

loglog(n™") - log(Ke ™ log(n™))? log (1og<l<s-1>)

(
mple = O
Csa ple ( 772 5

-1 _1w ) d+L/P)
Cgate =0\l (amaXY/lcommg log(n )))

log(n~' log(Ke™! log(n'l)))

Proof. We use the search algorithm outlined in Lemma 49 and descibed in pseudocode with
Algorithm 4 which makes calls to an algorithm A(x,u, €, 6) which approximately returns the
approximate CDF, and use Lemma 50 to instantiate A(x, u, &, ). Setg=n/8,0=09u,6=5/L
with L = O(log(1/u)), as discussed in Lemma 49. Further, recall from Lemma 49 that to reach
additive precision € in the ground state energy we set u = k&, and that our CDF is defined such that
k = O(K~"), where K is an upper bound on the spectral norm of H (see Lemma 47). |

8 Application: Green’s functions

In this section, we apply our algorithm to the evaluation of Green’s functions in the context of
many-body physics. Green’s functions capture key dynamical and spectral properties of quantum
systems, and their accurate estimation provides insights into physical observables such as particle
propagation, kinetic energy, and spectral densities.

8.1 Obtaining the Resolvent from the Fourier Representation

As in the previous application, to evaluate Green’s functions, we first consider their Fourier
representation. This gives us the desired resolvent operator, which we then need to estimate.

Lemma 52 (Resolvent Representation via Fourier—Laplace Transform ([KDW21])). Let ijo(t)
denote the time-domain retarded Green’s functiFon of a quantum system with N particles and ground
state energy Eév . Then, its frequency-domain representation is obtained via the Fourier—Laplace
integral transform with exponential convergence factor e voad! (T,,0.q > 0) as:

R i(w+irbroud)l
GR (w) = / dt G, (n)e ,
which evaluates to:

JJO(w) - <¢0 |c_]0R(w + lFbroad, HO)C |’7010V>
+ (W | € R (@™ +iTpoaas —Ho) oy 1014

where:
e wr=w=+u(N-N),
° A() = I‘AI— Eév,
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o R(w + iTproaqs H) is the resolvent operator, defined as:

<Mw+ﬁmmJ%:—a/ dt /@ *Troaa=H)1 (33)
0

Evaluating Eq. (33) analytically yields the standard form of the resolvent operator:
R(w + irbmad» FI) = ((,U + inroad - ﬁ)_l .

This shows that the frequency-domain Green’s function can be expressed in terms of a resolvent
operator, which is a shifted inverse of the Hamiltonian.

8.2 Approximation of the Resolvent

Back to estimating Green’s functions, we need to approximate the resolvent operator. Using the
Linear Combination of Unitaries (LCU) technique [CW12], the resolvent

. N . A _1
R(w + iTbroads H) = (w + iTbroad — H)
can be approximated with additive error £ using
N, )
h(a) + il broad, I:I) =—i Z At €l(w+lrbmad_H)kAt.
k=0

Lemma 53 (LCU Approximation of the Resolvent). [CWI2] Let H have spectrum o-(H) C [0, 1].
For any w € o (H) and artificial broadening Tyroaq > 0, the above LCU sum satisfies

”R(w + irbroad’ ﬁ) - h(w + irbroad, [:I)” <&

provided

1 1 3
M:o( log ) m:mmﬁ,A}:O@y
Ubroad€ Ubroad€ 27| H||
Where N. = t./At is the number of discrete steps. Implementing this approximation requires

o (1“,31 - log Fbmluds) queries to a time-evolution oracle for H and log N, ancilla qubits.
roa

To compute the Fourier coefficients and corresponding time signals ¢ and T required by
Algorithm 1, we use the following lemma, which provides bounds on truncation and discretization
of the Fourier-Laplace integral defining the resolvent.

Lemma 54 (Truncation Bound for Discretized Resolvent). Let I'j00q0 > 0 and € > 0. Truncating
the Fourier-Laplace integral

R(w + irbroad, HA) = / dl’ ei(w_ﬁ)te_rbmadt
0
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att. = N At and discretizing with step size At gives

Ne¢
h(w + iChroaa, H) = Z At e Veroaak At p=i(H-w) kAt
k=0

To ensure the truncation error

. N . A E
& = ”R(w + iIbroad H) - hOO(w + iLbroad H)” < 5’

it suffices to choose

1 2 tc 1 2
tc = N.At = log , No.=—= log .
Uhroad | At UhroaaAt |

Proof. The truncation error comes from neglecting the tail beyond ¢,:

o0 e_rbroadtc
S dl e_rbroadt - .
te

[ee]
& = H / dt (W1 g~ Toroutt
te [broad

Requiring &; < /2 gives

—TI't.
4 © e_rbmadtc < M — . = 1 lOg 2 .
2 [broad [broade

E
< = =
I_‘broad 2

The number of discrete steps is then N, = t./At, yielding

1 2
N, = o) .
‘ [broad At g I'broad€

This guarantees the truncation error is within /2. O

Finally, we apply our randomized primitive to estimate the resolvent operator for the Green’s
function.

Theorem 55 (Estimating the Resolvent via Randomized LCU). Assuming that we can prepare a
ground state, the resolvent operator

R(w +iLbroads FI) = (w + il proaa — I:I)_]

can be estimated to additive error € using Algorithm I with the following complexities:

Coure = O Tog — ( Y2 L jog—! )Hﬁ
= (0] -la * (0] ’
gate & Throad€ e comm U'broad 8 Ubroaa€

Csample =0

-1 LY 1\2

(Fbroad lOg l—‘broadf":) (log log g) l )

5 . Og —
&
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Proof. From Lemma 52, the resolvent can be approximated as

Ne
h(w + irbroad, HA) = _i Z At el(w+lrbroad_H)kAt
k=0

with additive error €. The corresponding Fourier coefficients and time signals are bounded by
c=N:At,  tyax = I,

where Lemma 54 gives

. 1 1 2 1 2
= 0 , = (0) .
‘ Ibroad & [broade ¢ Dproad At & Ibroade
Thus, we have . . . .
c= 0( lo ) fmax = 0( lo )
Ibroad & Ioroade e Ibroad 8 Ibroade

Applying these parameters in Algorithm | yields the stated gate and sample complexities:

1 1 1+
Cgate = 0] log : (amax Y Acomm - log ) ,

Ibroade Ibroad Ibroad€

Csample =0 : 10g =

0

. L) 12
(Fbroad 10g Fbroadg) (log log g) 1
g2 :

9 Application: Time-Evolved States

Theorem 29 directly gives an application for probing the distributions of time-evolved states, that is,
by considering the function f(H) = exp(—iHt). Here the Fourier parameters are trivial and the
result can be directly stated.

Theorem 56 (Distribution recovery for time-evolved states). Consider a Hamiltonian of the form in
Definition | and denote its time-evolved distribution on accessible input state |y as the vector p
with entries p; := | (i| e T |y) |>. We give an algorithm to return v such that ||V — p|| < & with
success probability at least (1 — ) and

* Gate complexity (per sample):
1
Coate = O(F (@max Y Adcomm T)Hp 10g(1/8)) )

* Sample complexity:

Csample =

(loglog(1/¢))* 1
o EE e 5]
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* Classical preprocessing time:

Cpre = O(IOg(l/S))

Further, the algorithm uses one ancillary qubit.
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