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Background

Product Formulae for Time Evolution

In a quantum system with Hamiltonian H, a state |ψ(T )⟩ evolves as:
|ψ(T )⟩ = e−iHT/h̄|ψ(0)⟩

When H =
∑m
j=1Hj, we use product formulae (Trotterization) P :

U(t)≈
(∏m

j=1 e
−iHjT/r

)r
or |ψ(0)⟩ e−iH1T/r e−iH2T/r · · · e−iHmT/r |ψ(T )⟩

repeat r times

•Each Hj is simple (e.g., a Pauli string), enabling native gate implementations.

•Number of steps: r = O
(
(α(p+1)

comm)
1
pT 1+1

pε−
1
p

)
.

•The order p controls the accuracy and scaling with time and error.

Why Product Formulae

Method Max Depth / Sample Sample Overhead

Product Formulae [1] O
(
Γ(α(p+1)

comm)
1/p)T 1+1/pε−1/p

)
O(1/ε2)

Qubitization [2] O
(
Γ
[
ΛT + log(1/ε)

log log(1/ε)

])
O(1/ε2)

Random Compiler [3] O(Λ2T 2) O(1/ε2)

•Low overhead: No ancillas or block encoding required.

•Simple compilation: Native gate decomposition.

•Commutator scaling: Errors tied to size of nested commutators (generally small).

•Limitation: Trotter formulas scale poorly with ε.

Richardson Extrapolation

To reduce Trotter error, simulate with multiple step sizes δi = siT and extrapolate.

• Improves accuracy: Cancels error up
to O(δm+1) with m runs.

•Hardware-friendly: Reduces circuit
depth burden, by including more sam-
ples — ideal for EFT devices.

• Studied for time-evolved observables [4].
Does it work more generally?

Richardson Extrapolation for
Trotter Observable

step size s

Observable estimate ⟨O⟩t

s1 s2

⟨O⟩(ex)t

Extrapolated

We create a linear combination of product formulae P using the Richardson schedule
{sj}mj=1 and coefficients {bj}mj=1 to estimate Tr[ρeiHT ] ≈εR

∑m
j=1 bjTr[ρP(sjT )]. We

estimate Tr[ρP(sjT )]) using Hadamard tests (test for real part shown below):

|0⟩ H H|ψ⟩ e−iH1t · · · e−iHNt

repeat rj := 1/sj times

Main Results

Key Takeaways

Richardson extrapolation provides an exponential reduction in the Trotter error
scaling for computing matrix functions.

•Error scaling exponentially improves ε−
1
p → log

(
1
ε

)
with only O

(
log log(1ε)

2
)
addi-

tional sample overhead

•λcomm = sup
j∈σZ+≥σm
1≤l≤K

( ∑
j1...j1∈σZ+≥p
j1+···+jl=j

∏l
κ=1

α
(jκ+1)
comm

(jκ+1)
2

) 1
(j+l)

•Note that λcomm << Λ and bounded for useful Hamiltonians:

1. electronic structure in plane-wave basis: α(j)
comm = O(nj) ⇒ λcomm = O(n)

2. k-local: α(j)
comm = O

(
|||H|||j−1

1 ∥H∥1
)

⇒ λcomm = O
(
|||H|||1∥H∥

1
p+1

1

)

Compiling Primitives

We give an algorithm to estimate matrix functions using product formulas as primitives.
Our simplest primitive to estimate Tr[ρeiHT ] has

Cgate = O
(
Γ (ΥλcommT )

1+1
p

(
log

(
1

ε

)))
, Csample = O

(
1

ε2

(
log log

(
1

ε

))2
)

Also have primitive for Tr[eiHTρeiHT
′
O] with O

(
1
ε2 log log

(
1
ε

)4))
sample complexity.

Using Fourier expansion f (A) =
∑K
k=1 cke

iAtk, we use primitive to estimate Tr[f (A)ρ]

Cgate = O
(
Γ (ΥλcommT )

1+1
p log

(
c(ε/3)

ε

))
, Csample = O

(
(c(ε/3))2

ε2

(
log log

(
1

ε

))2
)

and similarly Tr[f (A)ρf (A)†O] has O
(
(c(ε/3))4

ε2

(
log log

(
1
ε

))4)
sample complexity.

Algorithmic Applications

Phase Estimation

Estimates the ground energy E0 of Hamiltonian H. We use our primitive as follows [5]:

•Approximate CDF: C̃(x) = Tr[ρ Θ̃(xI − κH)] with resolution parameter u and
scaling κ where Θ̃ is the approximated Heaviside function and κ is a normalization.

•Ground State Energy Estimation: By testing threshold crossings of C̃(x ± u),

we can locate x∗ such that
∣∣∣x∗κ − E0

∣∣∣ ≤ u
κ

•Binary Search Strategy: Iteratively narrow the search interval with O(log(1/u))
evaluations of C̃(x), yielding an additive estimate of E0.

Thus, to estimate E0 to precision ε with constant success probability δ, we need:

Cgate = Õ

Γ(Υλcomm
ε

)1+1
p

 , Csample = Õ
(
1

η2

)
where η is the initial state overlap.

Green’s Function

In quantum physics, the frequency-domain Green’s function describes how a system
responds to perturbations at energy ω. It is essential for computing spectral properties,
such as excitation energies and densities of states.
This function involves estimating the resolvent operator with our primitive:

R(ω + iΓbroad, Ĥ) = (ω + iΓbroad − Ĥ)−1,

where Γbroad > 0 is a broadening factor that ensures convergence.

Cgate = Õ
(
Γ

(
amaxΥλcomm

1

Γbroad

)1+1
p )
, Csample = Õ

(
1

Γ2
broad ε

2

)
.

Refinements and Extensions

Partial Randomization [6]

Many Hamiltonians can be broken into a few high-weight terms, with the rest as low
weights. We apply product formulas on L high weight terms and randomize the rest:

•Estimates Tr[ZeiHT ])
•We implement Wm using RTE.

•We apply Richardson-extrapolation for:

Cgate = O
(
LD(Υλ̃commT )

1+1
p log2

(
1

ε

)
+ λ2RT

2
)
,

Csample = O
(
1

ε2
(log log

(
1

ε

))2
)

Fermion Systems

For systems in a η-fermion subspace, we tighten analysis with the fermionic semi-norm.

•Operators are number-preserving (map η-electron states to η-electron states)

•Gate complexity now dependent on the fermionic semi-norms of nested commutators

• Same bounds but with λ(η)comm defined from α(η)
comm < αcomm [7, 8, 9]
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