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Product Formulae for Time Evolution

In a quantum system with Hamiltonian H, a state |¢)(T")) evolves as:

$(T)) = e~y (0))
When H = Zm_ Hj, we use product formulae (Trotterization) P:

r

repeat r times

e Each H; is simple (e.g., a Pauli string), enabling native gate implementations.

e Number of steps: r = O (( <p+1))on +Eg_ﬁ)
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e [ he order p controls the accuracy and scaling with time and error.

Why Product Formulae

Method Max Depth / Sample

Product Formulae [1] O (F(oz(pﬂ))1/p)T1+1/p5—1/p)

O (T|AT + myiogtize))

O(A2T?)

e Low overhead: No ancillas or block encoding required.

Sample Overhead
O(1/€”)
O(1/€”)
O(1/¢”)

Qubitization [2]

Random Compiler [3]

e Simple compilation: Native gate decomposition.
e Commutator scaling: Errors tied to size of nested commutators (generally small).

e Limitation: Trotter formulas scale poorly with <.

Richardson Extrapolation

To reduce Trotter error, simulate with multiple step sizes 0; = s;1" and extrapolate.

Richardson Extrapolation for
Trotter Observable

Observable estimate (O),

e Improves accuracy: Cancels error up
to O(6™*1) with m runs.

e Hardware-friendly: Reduces circuit
depth burden, by including more sam-
ples — ideal for EFT devices.

Extrapolated

e Studied for time-evolved observables [4]. e

Does it work more generally?

S1 S9 step size s

We create a linear combination of product formulae P using the Richardson schedule
{s;}7, and coefficients {b;}"", to estimate Tr[pe'™"| ~., S, b;Tr[pP(s;T)]. We
estimate Tr|[pP(s;1')|) using Hadamard tests (test for real part shown below):
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Key Takeaways

Richardson extrapolation provides an exponential reduction in the Trotter error

scaling for computing matrix functions.
1

e Error scaling exponentially improves ¢ » — log (é) with only O (log log(%)z) addi-

tional sample overhead
1
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e Note that Aeomm << A and bounded for useful Hamiltonians:
1. electronic structure in plane-wave basis: o) = O(n/) = Aomm = O(n)
2.kelocal: @l = O (IIHIEIHIL) = A = O (ILEILI1HIE)

Compiling Primitives

We give an algorithm to estimate matrix functions using product formulas as primitives.
Our simplest primitive to estimate Tr[pe'!!] has
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Also have primitive for Tr[e'!! pe1°O] with O (é log log (é) )) sample complexity.

Using Fourier expansion f(A) = & | c,.e™Y, we use primitive to estimate Tr[f(A)p]

o (F e T) Lo <c<5/s>>> o= O <<c<e/3>>2 (1oglog @)2>
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and similarly Tr[f(A)pf(A)'O] has O (< clef3)) (log log (%))4) sample complexity.

Algorithmic Applications

Phase Estimation

Estimates the ground energy Ejy of Hamiltonian H. We use our primitive as follows [5]:

e Approximate CDF: C(z) = Tr[p©(zI — xH)] with resolution parameter v« and
scaling Kk where O is the approximated Heaviside function and x is a normalization.

e Ground State Energy Estimation: By testing threshold crossings of é(:z: + u),
we can locate z* 3;; | <.

e Binary Search Strategy: lteratively narrow the search interval with O(log(1/u))
evaluations of C(x), yielding an additive estimate of Ej.

Thus, to estimate Ej, to precision € with constant success probability 0, we need:
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where 1 is the initial state overlap.

Green’s Function

In quantum physics, the frequency-domain Green's function describes how a system
responds to perturbations at energy w. It is essential for computing spectral properties,
such as excitation energies and densities of states.

This function involves estimating the resolvent operator with our primitive:

R(UJ -+ irbroada F]) — (W + irbroad _ [:-’)_17

where ['pi0ag > 0 is a broadening factor that ensures convergence.
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Refinements and Extensions

Partial Randomization |6}

Many Hamiltonians can be broken into a few high-weight terms, with the rest as low
weights. We apply product formulas on L high weight terms and randomize the rest:

o Estimates Tr[Ze!1]) >
10" - 107" -
e We implement W, using RTE. | \
10~ 4
e \We apply Richardson-extrapolation for: = 1071 ——
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Fermion Systems

For systems in a n-fermion subspace, we tighten analysis with the fermionic semi-norm.
e Operators are number-preserving (map n-electron states to 7-electron states)
e Gate complexity now dependent on the fermionic semi-norms of nested commutators

e Same bounds but with A7 defined from o < acomm [7, 8, 9]
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