

Early Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter Extrapolation

Arul Rhik Mazumder

Co-Mentor: Samson Wang

Mentor: John Preskill

Background

Product Formulae for Time Evolution

In a quantum system with Hamiltonian H , a state $|\psi(T)\rangle$ evolves as:

$$|\psi(T)\rangle = e^{-iHT/\hbar}|\psi(0)\rangle$$

When $H = \sum_{j=1}^m H_j$, we use product formulae (Trotterization) \mathcal{P} :

$$U(t) \approx \left(\prod_{j=1}^m e^{-iH_j t/r} \right)^r \quad \text{or} \quad |\psi(0)\rangle \xrightarrow{\text{repeat } r \text{ times}} \left[e^{-iH_1 t/r} \xrightarrow{\text{---}} e^{-iH_2 t/r} \xrightarrow{\text{---}} \dots \xrightarrow{\text{---}} e^{-iH_m t/r} \right] |\psi(T)\rangle$$

- Each H_j is simple (e.g., a Pauli string), enabling native gate implementations.
- Number of steps: $r = \mathcal{O}\left((\alpha_{\text{comm}}^{(p+1)/p} T^{1+1/p} \varepsilon^{-1/p})\right)$.
- The order p controls the accuracy and scaling with time and error.

Why Product Formulae

Method	Max Depth / Sample	Sample Overhead
Product Formulae [1]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)/p}) T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Qubitization [2]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log \log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [3]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

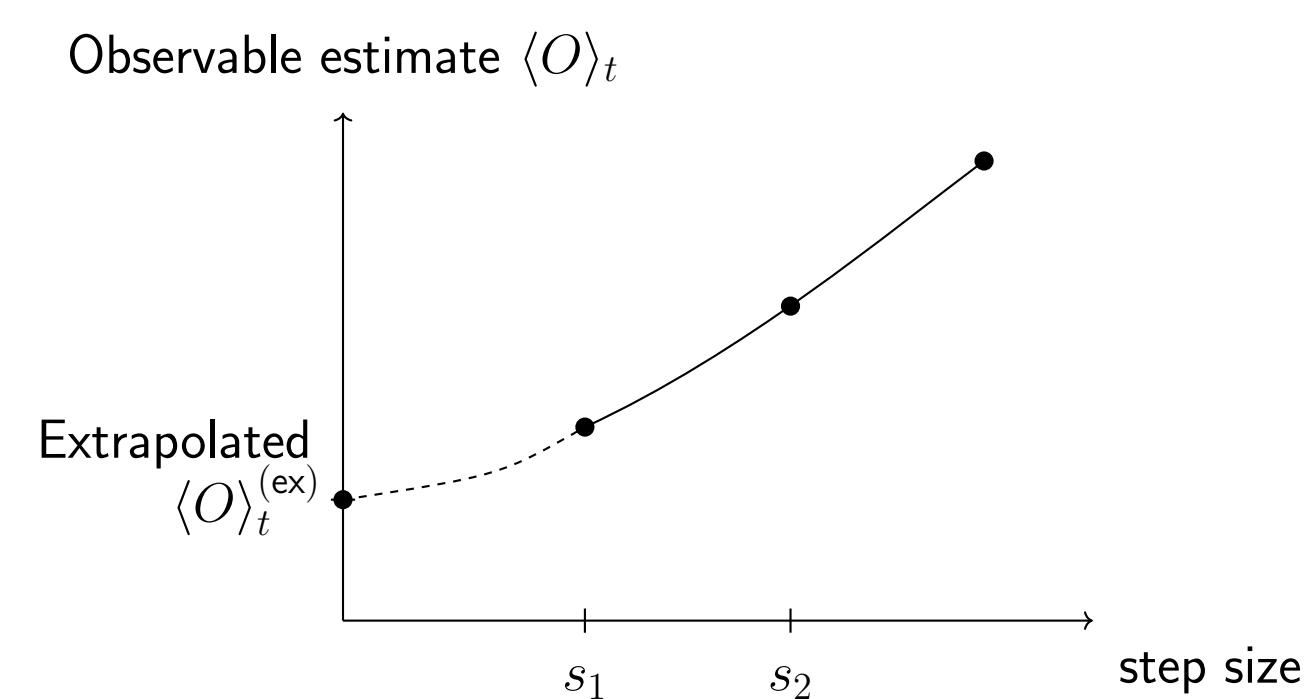
- **Low overhead:** No ancillas or block encoding required.
- **Simple compilation:** Native gate decomposition.
- **Commutator scaling:** Errors tied to size of nested commutators (generally small).
- **Limitation:** Trotter formulas scale poorly with ε .

Richardson Extrapolation

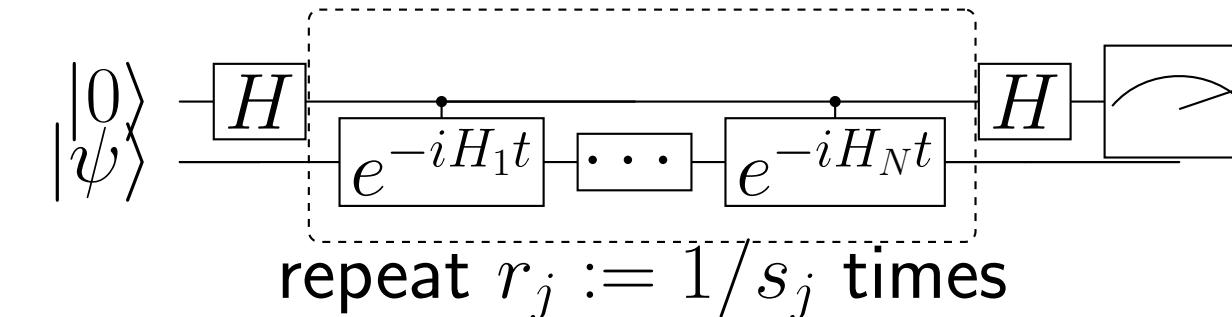
To reduce Trotter error, simulate with multiple step sizes $\delta_i = s_i T$ and extrapolate.

- **Improves accuracy:** Cancels error up to $\mathcal{O}(\delta^{m+1})$ with m runs.

Richardson Extrapolation for Trotter Observable



We create a linear combination of product formulae \mathcal{P} using the Richardson schedule $\{s_j\}_{j=1}^m$ and coefficients $\{b_j\}_{j=1}^m$ to estimate $\text{Tr}[\rho e^{iHT}] \approx_{\varepsilon_R} \sum_{j=1}^m b_j \text{Tr}[\rho \mathcal{P}(s_j T)]$. We estimate $\text{Tr}[\rho \mathcal{P}(s_j T)]$ using Hadamard tests (test for real part shown below):



Main Results

Key Takeaways

Richardson extrapolation provides an **exponential reduction** in the Trotter error scaling for **computing matrix functions**.

- Error scaling exponentially improves $\varepsilon^{-\frac{1}{p}} \rightarrow \log\left(\frac{1}{\varepsilon}\right)$ with only $\mathcal{O}\left(\log \log\left(\frac{1}{\varepsilon}\right)^2\right)$ additional sample overhead
- $\lambda_{\text{comm}} = \sup_{\substack{j \in \sigma Z, j \geq \sigma m \\ 1 \leq l \leq K}} \left(\sum_{\substack{j_1, \dots, j_l \in \sigma Z, j \geq p \\ j_1 + \dots + j_l = j}} \prod_{k=1}^l \frac{\alpha_{\text{comm}}^{(j_k+1)}}{(j_k+1)^2} \right)^{\frac{1}{(j+l)}}$
- Note that $\lambda_{\text{comm}} \ll \Lambda$ and bounded for useful Hamiltonians:
 1. electronic structure in plane-wave basis: $\alpha_{\text{comm}}^{(j)} = \mathcal{O}(n^j) \Rightarrow \lambda_{\text{comm}} = \mathcal{O}(n)$
 2. k -local: $\alpha_{\text{comm}}^{(j)} = \mathcal{O}\left(\|H\|_1^{j-1} \|H\|_1\right) \Rightarrow \lambda_{\text{comm}} = \mathcal{O}\left(\|H\|_1 \|H\|_1^{\frac{1}{p+1}}\right)$

Compiling Primitives

We give an algorithm to estimate matrix functions using product formulas as primitives. Our simplest primitive to estimate $\text{Tr}[\rho e^{iHT}]$ has

$$C_{\text{gate}} = \mathcal{O}\left(\Gamma(\Upsilon \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \left(\log\left(\frac{1}{\varepsilon}\right)\right)\right), \quad C_{\text{sample}} = \mathcal{O}\left(\frac{1}{\varepsilon^2} \left(\log \log\left(\frac{1}{\varepsilon}\right)\right)^2\right)$$

Also have primitive for $\text{Tr}[e^{iHT} \rho e^{iHT'} O]$ with $\mathcal{O}\left(\frac{1}{\varepsilon^2} \log \log\left(\frac{1}{\varepsilon}\right)^4\right)$ sample complexity.

Using Fourier expansion $f(A) = \sum_{k=1}^K c_k e^{iAt_k}$, we use primitive to estimate $\text{Tr}[f(A)\rho]$

$$C_{\text{gate}} = \mathcal{O}\left(\Gamma(\Upsilon \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \log\left(\frac{c(\varepsilon/3)}{\varepsilon}\right)\right), \quad C_{\text{sample}} = \mathcal{O}\left(\frac{(c(\varepsilon/3))^2}{\varepsilon^2} \left(\log \log\left(\frac{1}{\varepsilon}\right)\right)^2\right)$$

and similarly $\text{Tr}[f(A)\rho f(A)^\dagger O]$ has $\mathcal{O}\left(\frac{(c(\varepsilon/3))^4}{\varepsilon^2} \left(\log \log\left(\frac{1}{\varepsilon}\right)\right)^4\right)$ sample complexity.

Algorithmic Applications

Phase Estimation

Estimates the ground energy E_0 of Hamiltonian H . We use our primitive as follows [5]:

- **Approximate CDF:** $\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$ with resolution parameter u and scaling κ where $\tilde{\Theta}$ is the approximated Heaviside function and κ is a normalization.
- **Ground State Energy Estimation:** By testing threshold crossings of $\tilde{C}(x \pm u)$, we can locate x^* such that $\left|\frac{x^*}{\kappa} - E_0\right| \leq \frac{u}{\kappa}$
- **Binary Search Strategy:** Iteratively narrow the search interval with $\mathcal{O}(\log(1/u))$ evaluations of $\tilde{C}(x)$, yielding an additive estimate of E_0 .

Thus, to estimate E_0 to precision ε with constant success probability δ , we need:

$$C_{\text{gate}} = \mathcal{O}\left(\Gamma\left(\frac{\Upsilon \lambda_{\text{comm}}}{\varepsilon}\right)^{1+\frac{1}{p}}\right), \quad C_{\text{sample}} = \mathcal{O}\left(\frac{1}{\eta^2}\right)$$

where η is the initial state overlap.

Green's Function

In quantum physics, the frequency-domain Green's function describes how a system responds to perturbations at energy ω . It is essential for computing spectral properties, such as excitation energies and densities of states.

This function involves estimating the **resolvent operator** with our primitive:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1},$$

where $\Gamma_{\text{broad}} > 0$ is a broadening factor that ensures convergence.

$$C_{\text{gate}} = \tilde{\mathcal{O}}\left(\Gamma\left(a_{\max} \Upsilon \lambda_{\text{comm}} \frac{1}{\Gamma_{\text{broad}}}\right)^{1+\frac{1}{p}}\right), \quad C_{\text{sample}} = \tilde{\mathcal{O}}\left(\frac{1}{\Gamma_{\text{broad}}^2 \varepsilon^2}\right).$$

Refinements and Extensions

Partial Randomization [6]

Many Hamiltonians can be broken into a few high-weight terms, with the rest as low weights. We apply product formulas on L high weight terms and randomize the rest:

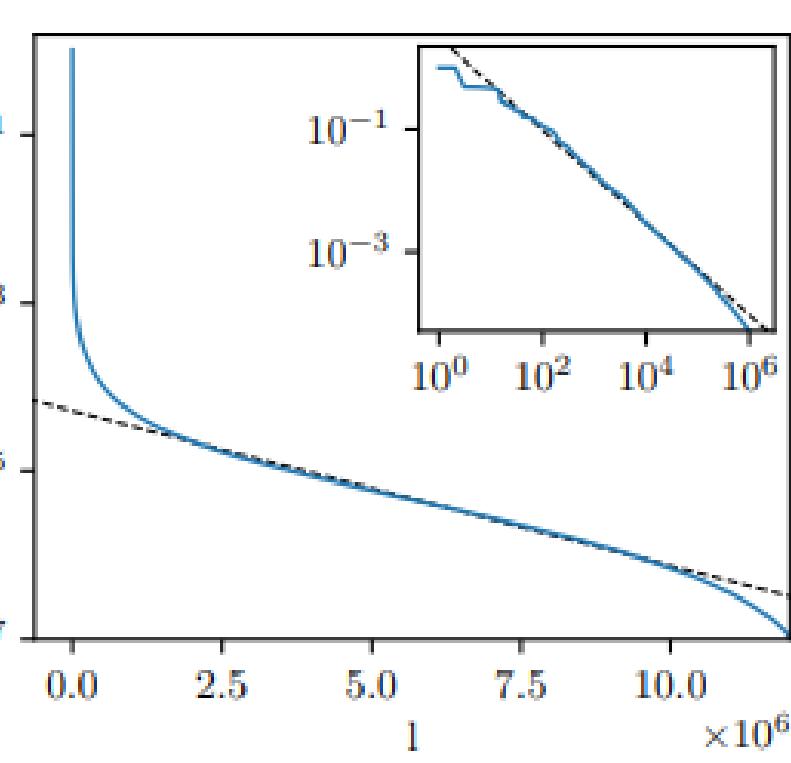
- Estimates $\text{Tr}[Z e^{iHT}]$

- We implement W_m using RTE.

- We apply Richardson-extrapolation for:

$$C_{\text{gate}} = \mathcal{O}\left(L_D(\Upsilon \tilde{\lambda}_{\text{comm}} T)^{1+\frac{1}{p}} \log^2\left(\frac{1}{\varepsilon}\right) + \lambda_R^2 T^2\right),$$

$$C_{\text{sample}} = \mathcal{O}\left(\frac{1}{\varepsilon^2} (\log \log\left(\frac{1}{\varepsilon}\right))^2\right)$$



Fermion Systems

For systems in a η -fermion subspace, we tighten analysis with the fermionic semi-norm.

- Operators are number-preserving (map η -electron states to η -electron states)
- Gate complexity now dependent on the fermionic semi-norms of nested commutators
- Same bounds but with $\lambda_{\text{comm}}^{(\eta)}$ defined from $\alpha_{\text{comm}}^{(\eta)} < \alpha_{\text{comm}}$ [7, 8, 9]

References

- [1] Childs et al., "Theory of Trotter Error with Commutator Scaling," 2021.
- [2] Low et Chuang., "Hamiltonian Simulation by Qubitization," 2019.
- [3] Wan et al., "Randomized Quantum Algorithm for Phase Estimation," 2021.
- [4] Watson and Watkins., "Exponentially Reduced Circuit Depths Using Trotter Error Mitigation," 2024.
- [5] Lin and Tong., "Heisenberg-Limited Ground-State Energy Estimation for Early Fault-Tolerant Quantum Computers," 2022.
- [6] Günther et al., "Phase estimation with partially randomized time evolution," 2025.
- [7] Su et al., "Nearly tight Trotterization of interacting electrons," 2021.
- [8] Mcardle et al., "Exploiting fermion number in factorized decompositions of the electronic structure Hamiltonian," 2022.
- [9] Low et al. "On the complexity of implementing Trotter steps," 2023.