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Abstract

In this paper, we study a shipment rerouting problem, which

generalizes many NP-hard routing problems and packing

problems. This problem has ample and practical appli-

cations in vehicle scheduling and transportation logistics.

Given a network of hubs, a set of shipments needs must be

delivered from their sources to their respective destinations

by trucks. The objective is to select a set of transportation

means and schedule travel routes so that the total cost is

minimized. This problem is NP-hard and only classical ap-

proximation algorithms were known to have been studied for

some of its NP-hard variants. In [21], a quantum algorithm,

based on the Ising model, generates an exact solution for

a variant of this problem. In this work, we design classical

exact and approximation algorithms as well as a quantum al-

gorithm for this problem. The algorithms that we design use

novel mathematical programming formulations and/or new

insights on solving packing and routing problems simulta-

neously. Such algorithms take advantage of the network in-

frastructure, the shipments, and transportation means. We

give provable running time bounds. We conduct extensive

experiments and show that our classical solutions are empir-

ically better than the up-to-date quantum algorithms in the

noisy intermediate-scale quantum (NISQ) era.

1 Introduction

We consider a generalized version of the shipment
rerouting problem studied in [21]. In this problem, there
is a network containing hubs and a set of transportation
means (such as trucks or trains) that can have their
runs on the network. For simplicity, we use trucks
with different capacities and different rental/operation
costs to represent various transportation means. Some
transportation requests, which specify some goods (also
called needs) are to be delivered from their sources to
their respective destinations, should be satisfied. The
objective is to minimize the total cost of successfully
transporting the goods from their sources to their
destinations.

1.1 Problem statement. Consider the shipment
rerouting problem. We have a directed graph G =
(V,E) where V is the set of vertices and E is the set of

edges. Each edge e ∈ E has a cost ce ≥ 0. A set of goods
is to be transported by transportation means (trucks
with capacities) running over the network. A subset of
vertices H ⊆ V are labeled as hubs where goods can be
uploaded (at these goods’ source-hubs) and downloaded
(at these goods’ destination-hubs). Note that a hub can
be some goods’ source hubs and some other goods’ des-
tination hubs.

From the directed graph G, we generate a directed
graph F = (H,P ) where the set of vertices H ⊆ V
denote the hubs only and the set of edges P denote the
direct paths connecting two hubs in the transportation
network G = (V,E) — that is, the edge p(i, j) ∈ P
in F denotes a shortest path from one hub i ∈ H to
another hub j ∈ H on the transportation network G
and these path-costs c(p(i, j)) =

∑
e∈p(i,j) ce can be

pre-calculated using n runs of the Dijkstra’s algorithm
in time O(|E||V | + |V |2 log |V |) where V is the set of
vertices in the transportation networkG. The generated
F is a complete digraph.

Consider the complete digraph F = (H,P ). Let
|H| = n and we label these hubs ∈ H as 1, 2, . . . , n.
There are m transportation requests of truck runs for
transporting goods. We use a triple (si, ti, li) to denote
each run, where si is the source hub, ti is the destination
hub, and li is the goods load. We cannot split these
goods during the transportation. There are a set of
trucks with various capacities. For goods with load li,
a truck with its remaining capacity ≥ li can deliver the
goods from si to ti with the travel distance c(p(si, ti)).
There is a list of K trucks (transportation means) with
their capacities as L1 ≤ L2 ≤ . . . ≤ LK . For these
trucks, we pay costs R1, R2, · · · , RK for renting and
operating them. Without loss of generality, we have
two assumptions: (1) R1 ≤ R2 ≤ · · · ≤ RK and (2) the
functions of rental fee R of load L are concave. We also
assume that all the values (edge costs, loads of goods,
truck capacities, rental fees) are positive integers. (The
model studied in [20] is a special case in which all the
trucks are with identical capacity and the same rental
cost 0.) The objective is to minimize the total cost
of truck rental fees and travel distances to transport all
goods from their sources to their respective destinations.
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1.2 Related work. Many variants of the shipment
rerouting problem have been studied in the past. The
general version is intractable, shown as below. Consider
a setting in which all the trucks have capacities more
than the total goods’ load

∑
i li and the minimum rental

cost R1 is larger than the total cost of all the paths
among all the hubs. In addition, assume that all the
transportation needs are very far apart from each other
compared to the travel distance of each transportation
request. Thus, to minimize the total cost paid to
transport all the goods, we only need one truck to ship
all the goods, and the optimal solution to our shipment
rerouting problem minimizes the total travel distance by
visiting all the hubs. The shipment rerouting problem is
reduced to a NP-complete routing problem, the traveling
salesman problem [13]. Now, we consider another
special case in which all the transportation needs are
with the same source-hub and the same destination-
hub. In addition, the network is just a line graph.
We show that this variant of the shipment rerouting
problem is NP-complete. Consider n transportation
requests, each request i having a need li. There are
only two trucks, with their capacity =

∑
li/2. Thus,

we need to decide which request is assigned to which
truck to carry from the source to the destination. This
problem reduces to an NP-complete packing problem,
the partition problem [8, 4].

To our knowledge, there are no classical approxima-
tion algorithms known for the general shipment rerout-
ing problem. Part of the reason is that an algorithm’s
approximation ratio is very sensitive to the values in
the input instance. It is easy to construct an instance
so that an approximation ratio can be changed from 1 to
an arbitrary value given a slight change in the shipment
loads, the truck capacities, and/or the rental fees. For
this problem, we not only consider how to schedule a
shipment to minimize the total travel distance but also
how to pack goods to satisfy truck capacity constraints.
Any single algorithmic technique cannot optimize the
objective under both constraints.

In [21], Yarkoni et. al studied the version in which
all trucks are identical. They formulated the problem as
a quadratic unconstrained binary optimization problem
and used quantum computers and classic computers
to calculate the solution. The formulation used an
Ising model-based quantum annealing approach [14]. In
designing the logistic network, Ding et al. [6] solved
the problem using a quantum annealing approach. The
constraints are different from the one in [21], and so
are the formulations. Neither considered trucks with
different capacities and rental fees. Note that allowing
trucks to have various capacities makes the packing
problem much more challenging.

1.3 Our contributions. In this paper, we design
both classical and quantum algorithms for the shipment
rerouting problem. From the algorithm design perspec-
tive, our contributions include (1) a new integer linear
program formulation that generates an exact solution
for the general problem, (2) a kernelization technique
which pre-processes a given input instance to find out an
optimal solution for a subset of instance, (3) an intuitive
scalable weighted matching algorithm which optimizes
both packing and routing, and (4) an alternative quan-
tum algorithm to the one based on quadratic uncon-
strained binary optimization (QUBO). From the empir-
ical study perspective, we study our algorithms’ perfor-
mance over various network topologies and transporta-
tion requests. The experimental results give us guidance
in selecting algorithms for the shipment rerouting prob-
lem at various configurations.

In Section 2, we introduce our classical algorithms’
techniques and provide their analysis. In Section 3,
we introduce our quantum algorithm, which is different
from the ones given in [21]. In Section 4, we conduct
extensive experiments to compare our algorithmic solu-
tions against the state-of-the-art solutions in the current
literature.

2 Classical Algorithms

In this section, we describe our classical algorithms
and show their theoretical analysis. We start with
some intuition, concepts, and algorithmic insight in
Section 2.1. We also include some pre-processing steps
using the kernelization techniques in Section 2.1. We
then describe two algorithms, one exact solution which
is based on a 0-1 integer linear program and one
approximation solution which is based on a scalable
weighted matching, in Section 2.2 and Section 2.3
respectively.

The algorithm based on the 0-1 integer linear pro-
gram is named ALG-IP and the algorithm based on the
weighted matching is named ALG-WM.

2.1 Preliminaries. Consider an input instance with
n hubs on a complete digraph F = (H,P ) with costs
c(p(s, t)) ≥ 0,∀s, t ∈ H,∀p ∈ P . There are m
transportation requests with each request i having a
source-hub si, a destination hub ti, and a load li,
where i = 1, 2, . . . ,m. There are K trucks with
their capacities L1, L2, . . . , LK and rental/operation
fees R1, R2, . . . , RK respectively. The objective is to
minimize the total cost of transporting the goods from
their sources to their respective destinations. A solution
to this problem is to identify some non-overlapping
subsets of requests with each subset being served by a
truck under its capacity constraints. An algorithm can
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be viewed as a process of ‘grouping’ these m requests
so that at the end of the algorithm course, any request
belongs to one subset of requests. We use a group to
represent a set of goods that are to be delivered by a
single truck.

Classifying pairs of transportation requests.
Let us consider m transportation requests (i.e., (truck-
)runs) (si, ti, li), where i = 1, 2, . . . ,m, with si being the
source hubs, ti being the destination hubs, and li being
the load to be delivered from si to ti. For any pair of two
runs, we calculate the increased cost of using one truck
for both runs instead of two separate trucks. When
two runs are merged, we need to select an appropriate-
capacity truck to serve these two runs, based on the
order of visiting the sources and the destinations. If
two runs are served one after another, we use a truck
that has a capacity larger than the heavier-load run.
If a truck carries both goods at the same time before
dropping anything off, we use a truck whose capacity is
larger than the sum of loads. Given two runs (s, t, l)
and (s′, t′, l′), the increased cost (whose value may
be negative) due to grouping these two runs into one
is defined as (R and R′ define the truck rental fees
respectively) in Table 1.

case merged run increased cost
1 (s, t, s′, t′) c(p(t, s′))−min(R,R′)
2 (s′, t′, s, t) c(p(t′, s))−min(R,R′)
3 (s, s′, t, t′) c(p(s, s′)) + c(p(s′, t)) + c(p(t′, t))

−c(p(s, t)− c(p(s′, t′))
+R′′ −R−R′

4 (s, s′, t′, t) c(p(s, s′)) + c(p(t′, t))
−c(p(s, t))
+R′′ −R−R′

5 (s′, s, t, t′) c(p(s′, s)) + c(p(t, t′))
−c(p(s′, t′))
+R′′ −R−R′

6 (s′, s, t′, t) c(p(s′, s)) + c(p(s, t′)) + c(p(t′, t))
−c(p(s, t))− c(p(s′, t′))
+R′′ −R−R′

Table 1: The increased cost due to merging two truck
runs into one

In Table 1, the value R′′ denotes the minimal rental
fee for a truck carrying the load l + l′. It takes time
O(m2) to calculate the increased cost due to ‘merging’
every pair of two runs in the requirements. Based on
the values calculated above, we label two truck runs as
twisted or isolated, depending on which case (1 to 6 in
Table 1) results in the minimum cost increased: If the
min-value is one of first two cases (1 and 2), then we
name these two truck runs as isolated and otherwise
(case 3 to case 6), we label them as twisted. Such

a relationship (twisted or isolated) between two runs
is associative but not always transitive. However, our
experiments indicate that for most application problems
the transitive relationship holds for three or more runs.

Heuristically speaking, a pair of twisted runs usu-
ally have close sources and destinations compared to run
lengths. A pair of isolated runs are either far apart from
each other or have relatively short run lengths. Our clas-
sical algorithm (detailed in Section 2.3) is based on this
and other intuitions.

Special cases: single source-hub or single
destination-hub. Now, we discuss the cases involving
shared sources and destinations that can be solved in
polynomial time.

Lemma 2.1. Consider the case where the transporta-
tion network is a star graph with bidirectional edges. If
the root is the shared source hub for all transportation
requests, then there exists a dynamic programming-based
optimal algorithm running in time O(m2).

Proof. Without loss of generality, we assume that all
the sources are the same at the root. For each run
in a star graph, the truck must go from the root to
the respective endpoint. If the truck is going to serve
another run, it must return to the root. Thus, a truck
saves its cost of getting back to the root by c(s, ti) if this
truck delivers its last goods at the destination ti. An
optimal solution OPT will consist of some trucks serving
their respective groups, with no runs being shared across
groups. For each group, the truck should end at the
farthest endpoint within the group, and the order in
which the other runs are served does not matter. Sort
all the loads as l1 ≤ l2 ≤ · · · ≤ lm. For the first i
smallest runs, consider the minimal rental fee Ri truck
that must be rented to serve the ith run, along with
the prior truck with Rj rental fee to serve the j-th run.
Then, truck with fee Ri must serve runs lj+1 to li. Let
OPT (i) denote the minimum rental cost serving the
first i transportation requests. We have the following
recurrence

OPT (0) = 0

OPT (1) = R1 + c(s, t1)

OPT (i) = min
j<i

OPT (j) + 2

i∑
q=j+1

c(s, tq)(2.1)

+Ri − c(s, ti)

OPT (m) is the optimal value. It takes time
O(m logm) to sort the load. For each run OPT (i),
i = 1, 2, . . . ,m, it takes time O(m) to find the mini-
mum out of all possible j. Since OPT runs m times,
the total processing time is O(m2).
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From the proof of intractability for the shipment
rerouting problem, we know that even for an input in-
stance on a line graph, this problem can be NP-hard.
However, if we limit that all the transportation requests
have the same source-hub or the same destination-hub,
then a greedy algorithm is optimal for line graphs and
a dynamic programming algorithm is optimal for trees
(reduced to star graphs). If we decompose a network
into multiple components so that for a component which
is a line graph or a tree with a shared source-hub or
a shared destination-hub, then we have efficient algo-
rithms to get the optimal solution for that component.
The idea is similar to the one shown in the proof of
Lemma 2.1.

2.2 An integer linear program ALG-IP and a
pre-processing decomposition step. In this section,
we introduce an integer program that generates the ex-
act solution to the shipment rerouting problem. This
program serves as the benchmark compared with our
intuitive classical and quantum algorithms. In addi-
tion, the formulation is new and we apply some pre-
processing decomposition steps to make the input in-
stance smaller, thus, the algorithm based on the integer
linear program can run faster.

We remark here that the mixed integer program
formulated in [21] only considers the case in which
all trucks have identical capacity (and thus, the same
rental/operation fee for all the trucks). This assumption
in [21] makes the program easy to formulate because one
does not need to worry about the combinations of trucks
in serving a group of transportation requests.

Consider a complete digraph F = (H,P ) with
|H| = n. Consider m transportation requests
(s1, t1, l1), (s2, t2, l2), . . . , (sm, tm, lm) with K trucks.
These K trucks have capacities L1 ≤ L2 ≤ · · · ≤
LK and their corresponding rental/operation fees are
R1, R2, . . . , RK respectively. We use c(p(a, b)) to de-
note the distance between a hub a to a hub b. We label
these trucks as 1, 2, . . . ,K.

In our solution, we have some truck routes to satisfy
all the transportation requests. Such a truck route must
start from one source-hub and end at one destination-
hub. We only list the hubs that a truck must visit in
the graph F = (H,P ), and thus, we assume that these
truck routes do not share hubs in F = (H,P ). Also,
we assume these K trucks as K machines (a subset of
the trucks are serving the transportation requests). We
define the indicator variables in Table 2 and present the
constraints over these 0-1 variables in the list from C1

to C7. The objective is listed as C8.

C1. A transportation request must be served. The
source and the destination of a request must be

Xi,j,p an indicator variable on the source si of
request (si, ti, li) on the jth route at the
position p,

Xi,j,p =

{
1, if si is at position p on the route j

0, otherwise

Yi,j,p an indicator variable on the destination ti
of request (si, ti, li) on the jth route at the
position p,

Yi,j,p =

{
1, if ti is at position p on the route j

0, otherwise

Zj an indicator variable on whether the route j
is selected or not.

Zj =

{
1, if the route j is selected

0, otherwise

Table 2: 0-1 variable used for the integer linear program

placed at some positions of the routes.

2m∑
p=1

K∑
j=1

Xi,j,p = 1, i = 1, . . . ,m

2m∑
p=1

K∑
j=1

Yi,j,p = 1, i = 1, . . . ,m

C2. For each position p on a route, we have at most one
transportation request.

m∑
i=1

(Xi,j,p + Yi,j,p) ≤ 1, j = 1, . . . ,K, p = 1, . . . , 2m

C3. A request has its source-hub an destination hub on
the same route.

2m∑
p=1

Xijp =

2m∑
p=1

Yijp, i = 1, . . . ,m, j = 1, . . . ,K

C4. A request source-hub should be before its
destination-hub on the route. This constraint re-
places the above one in our formulation.
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q∑
p=1

Yijp ≤
q∑

p=1

Xijp, i = 1, . . . ,m, j = 1, . . . ,K

q = 1, . . . , 2m

C5. A route is chosen given it having transportation
requests on it.

Zj ≥
2m∑
p=1

Xijp =

2m∑
p=1

Yijp, i = 1, . . . ,m, j = 1, . . . ,K

C6. A truck on a route should have its capacity no less
than the load it carries along the route.

Lj ≥
q∑

p=1

(
m∑
i=1

(Xijp · li)−
m∑
i=1

(Yijp · li)

)
,

j = 1, . . . ,K, q = 1, . . . , 2m

C7. The indicator variables X and Y , if they are
non-0, should be consecutive in the positions of
a route. That is, if a position is not occupied
by some source-hub or destination-hub of a trans-
portation request, then its immediate following po-
sition should not be occupied by some hub.

q∑
p=1

m∑
i=1

(Xijp + Yijp) +

q∑
p=1

m∑
i=1

(Xijp+1 + Yijp+1)

≥2

q∑
p=1

m∑
i=1

(Xijp+2 + Yijp+2)

j = 1, . . . ,K, q = 1, . . . , 2m− 2

C8. The objective is to minimize the total rental fee and
the total travel cost.

min
∑K

j=1 Rj · Zj +∑m
i=1

∑m
i′=1

c(p(i, i′))
∑K

j=1

(
1 + ⌊ (Xij(p−1)−1)+(Yijp−1)

2 ⌋
)

We remark here that the work [21] did not consider
the truckload constraints on various orders of source-
hubs and destination-hubs as what we did in the above
C4. Our integer linear program is a 0-1 linear program.
We also remark that the constraint C7 ensures that we
correctly calculate the minimum cost of traveling along
the routes specified in the constraint C8.

Benders decomposition for the 0-1 linear
program. Applying this to real-world networks (as
outlined in Section 4), we find out the linear program
size is huge but the program has a block diagonal
structure which lends itself toward optimization via
decomposition. Therefore, we take a pre-processing
step to decompose the program into smaller ones with
fewer variables. While there exist other well-known
decomposition techniques, most notably Dantzig-Wolfe
decomposition [5], Benders decomposition [2] is the
best-suited decomposition algorithm due to the presence
of the linking variable structure column, shown in
Figure 1.

Figure 1: Benders block diagonal coefficient matrix with
linking variable structure

Benders decomposition uses a divide-and-conquer
framework to solve large-scale convex problems by sepa-
rating variables into master problems and sub-problems
(refer to Figure 1) and it is the core part of a bound-
and-price approach [1]. These problems are created by
dividing the problem variables between the linking and
non-linking variables. Linking variables are stricter and
in the case of mixed-integer linear programs are dis-
crete or binary variables used to construct the master
problems — this master problem produces the initial
solution and lower bound solution to the initial prob-
lem. The remaining non-linking variables are looser
(such as continuous variables) and are included in the
sub-problems. These problems are purely linear pro-
gramming problems and thus easier to solve. Solving
the sub-problems creates additional constraints (known
as Benders cuts) used to guide the algorithm towards
the optimal solution. Benders decomposition operates
by first solving the master problem without any con-
straints and then solving the sub-problems. Solving a
sub-problem can have one of three outcomes:

1. if the sub-problem is unbounded, a Benders cut is
added to eliminate unfeasible first-stage solutions,

2. if the sub-problem is unfeasible, then the initial
problem is either unfeasible or unbounded,
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3. if the sub-problem has a finite optimal solution, a
Benders cut is used to improve the objective value.

The master problem is then resolved with these
new Benders cuts and the process is repeated until an
optimal solution is found or infeasibility is proven. We
implement Bender decomposition in Section 4 as one
pre-processing step.

2.3 A weighted matching algorithm ALG-WM.
In addition to the 0-1 linear program formulated above,
we design a classical algorithm for the shipment rerout-
ing problem. This algorithm is based on our insight
into the relationship among the transportation requests:
twisted runs and isolated runs. Heuristically, a group of
twisted runs have their source-hubs close to each other
and their destination-hubs close to each other. For a
group of isolated runs, their source-hubs are closer to
their respective destination-hubs.

A pre-processing step. In our pre-processing
step, we identify the relationship between any two truck
runs. However, an optimal solution should specify the
order of visiting the source-hubs and/or destination-
hubs for multiple truck runs. Avoiding enumerating all
the orders, we take a fast and efficient way as specified
below to pre-process the graph G = (H,P ):

1. Build a graph F ′ withm vertices initially, with each
vertex representing a truck run.

2. For any two truck runs, calculate their relationship
(twisted or isolated) as specified in Section 2.1.
Two vertices in F ′ have an edge if and only if they
are twisted.

3. Find the connected component of the graph. Each
connected component represents a super-twisted-
run. Two super-twisted runs are labeled as isolated.

Calculating the twisted/isolated relationship takes
time O(m2) and the breath-search-first algorithm calcu-
lating the connected components takes time O(m). We
thus have the following result.

Lemma 2.2. The pre-processing step takes time O(m2).

A layered algorithmic approach with two
stages. We now extend the concept of twisted runs and
isolated runs to super-twisted runs and super-isolated
runs respectively, calculated in the pre-processing step.
We apply the heuristics on twisted runs and isolated
runs on the super twisted run and the super isolated
runs. In this way, we have a layered approach in
assigning routes to the transportation needs as sketched
below:

1. In this first phase: For each super twisted run,
design a routing algorithm to route all the twisted
runs in it.

Repeat doing so until all the runs within a super-
twisted run are scheduled.

2. In the second phase: For all the isolated runs,
design a routes algorithm to route all the super-
isolated runs.

A weighted matching algorithm for each
stage. Consider a group of twisted runs in a super-
twisted run. If the super-twisted run’s size is small (as a
constant), then we find an optimal sequence of schedul-
ing these runs can be done by using a brute force ap-
proach. If a super-twisted run’s size is large, then we
use a greedy algorithm to schedule all the runs. This
greedy algorithm depends on a concept marginal cost.

Definition 1. (Marginal (merging) cost.)
Consider two (super)runs. The marginal cost is the
minimum difference between an optimal cost run for
these two and the sum of the separate two runs.

Given two transportation requests (s, t, l) and
(s′, t′, l′), the marginal cost is the minimum value in
the 3rd column in Table 1.

In each phase, use a weighted matching algorithm
to find out the order of scheduling the (super)runs to
reduce the total cost incurred given the marginal cost is
negative. The algorithm works as below:

1. In this first phase: Consider each of the super-
twisted runs calculated in the pre-processing step.
For each two runs, use an edge to connect them and
use the marginal cost, if negative, to represent the
edge’s value.

Apply the weighted matching algorithm [7] to
merge the runs and recalculate the marginal costs
for those merged runs. Repeat the above step until
the merging step stops (with no negative-marginal-
cost edges connecting runs).

2. In the second phase: Regard each of the super-
isolated runs calculated (with each super-twisted
relabeled as a super-isolated run after the first
phase).

Apply the weighted matching algorithm [7] to
merge the runs and recalculate the marginal costs
for those merged runs. Repeat the above step until
the merging step stops (with no negative-marginal-
cost edges connecting runs).

Initially, we have m runs and O(m2) edges con-
necting some of them. The weighted matching algo-
rithm [7] takes time O(m2) for each round of merging
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and the number of runs is reduced to half in each round.
We have at most O(logm) rounds of merging. There-
fore, the total running time of the matching algorithm
(along with the cost of calculating the marginal cost) is
bounded by

O

(
m2 +

(m
2

)2
+
(m
22

)2
+ · · ·

)
= O

(
m2
)

3 An Quantum Algorithm based on QUBO
Representation

In this section, we design a quantum algorithm for the
shipment rerouting problem. Though the 0-1 integer
program formulated in Section 2 can be solved by
most classical commercial solvers to get an optimal
solution, such a program is not compatible with any
quantum algorithmic solvers known in the current noisy
intermediate-scale quantum (NISQ) era. All known
quantum annealing-based solvers only accept problems
that have quadratic unconstrained binary optimization
(QUBO) solutions. These problems are of the form
minxTQx, where x ∈ {0, 1}n and Q is an upper
triangular matrix with each entry Qij representing the
pairwise weight of xixj .

Note that there exist various practical approaches
of integer-to-binary mapping for quantum annealers
(see [11] and the reference therein). The 0-1 linear
program that we have developed in Section 2.2 can
be converted into a QUBO efficiently, through a 1-to-1
mapping between QUBO and Ising models using spin-
binary bijection. The challenges here are (1) how to use
fewer qubits for the QUBO, and (2) how to improve a
solution’s precision.

On reducing the number of qubits used in
the QUBO formulation. We pre-process the input
instance through the Bender decomposition so that the
input instance can be decomposed into multiple parts
with each part having a smaller size. In addition, we use
the pre-processing step to calculate the twisted runs and
isolated runs so that we can identify more variables’ val-
ues in the constraints before we encode these variables
into QUBO. Both pre-processing steps have been de-
scribed in Section 2.1 and Section 2.2. The kernel of the
0-1 linear program, which is rewritten as a QUBO for-
mulation with multiple decomposed parts, can be solved
via quantum search methods, or heuristically through
quantum annealing approaches [17].

On alternatives of solving the 0-1 integer pro-
gram. We use the quantum version of linear program
solver [12] to get an approximation and then use exact
quantum branch-and-bound quantum algorithms [15, 3]
to find the optimal solution. These branch-and-bound
quantum algorithms are essentially quantum backtrack-

ing variants, better than naively using Grover’s search
algorithm [9, 10]. In addition, the solution’s precision
depends on Grover’s algorithm [9, 10] (which is used
to find the minimum value) implemented for the error-
tolerant quantum hardware in the current NISQ era.
Note that in our experiments, we do not include these
alternative quantum algorithms as the errors and the
overheads introduced prohibit us from getting some rea-
sonable solutions to the optimal one.

4 Experiments

In this section, we design experiments to compare the
classical algorithms and the quantum algorithms on
real-life data sets.

4.1 Settings. The code is available at https://

shorturl.at/ED5Ww.
On input data. The input data instance comes

from the Transportation Networks Github [18]. This
data repository was initially developed to solve the
traffic assignment problem [16], which the shipment
rerouting problem greatly resembles. The algorithms
mentioned in Section 2 and Section 3 are tested across
10 shipment input sizes, with each over the following 5
networks: Chicago, Barcelona, Winnipeg, Anaheim, and
Eastern Massachusetts, described in Table 3.

names # of nodes # of edges

Eastern Massachusetts 74 258
Anaheim 416 914
Chicago 933 2950
Winnipeg 1052 2836
Barcelona 1020 2552

Table 3: Testbed: 5 networks

Given an underlying network, the truck runs are
randomly generated, and their candidate routes are
created by conducting depth-first traversals from each
run’s source to its destination. As there could be
exponentially many candidate routes for each run, we
limit each shipment to five candidate routes.

We conduct two sets of tests: one considering small
input sizes of 30, 50, 80, and 100 runs and the other
considering exponentially large input sizes of 32, 64,
128, 256, 512, and 1024. The large-size input instances
require the installation of IBM CPLEX Optimization
Studio.

On hardware. We record the running time and
the solution quality for each test. The running time
is measured in minutes and seconds. The classical
algorithms are implemented using Python and they
run on a CPU using a 12th Gen Intel Core i7-1260P
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processor with 16.0 GB memory.
The quantum algorithm model as a binary

quadratic model uses PyQUBO [22, 19] and it runs
using D-Wave’s Leap hybrid solver. The Leap hybrid
solvers are proprietary quantum-classical-quantum hy-
brid solvers offered by D-Wave to solve large QUBO
problems on quantum processing units (QPUs). As the
problems are submitted to remote solvers, wall clock
measurement is not sufficient. In the experiments, the
runtime of quantum algorithms is queried using Ocean
API.

4.2 Experimental results and analysis. Each al-
gorithm has been tested 10 times for each input on all
the networks with the results displayed in the plots. All
algorithms have a similar degree of optimality and thus,
we only report these algorithms’ runtime to differentiate
them.

Figure 2: Running time for small instances for Chicago

From these plots, we have the following observations
and the summary of our conclusions is in Figure 14.

1. Across all five networks, ALG-IP had the worst per-
formance across small-size inputs while performing
significantly better on the larger-size inputs.

Part of the reason is that most of the variables are
generated from the initial graph. The additional
shipments made little difference in the running time
for this problem as opposed to the other algorithms.
For this reason across all tests, ALG-IP displays a
clear linear growth rate.

2. On the other hand, ALG-WM and ALG-WM with
twisted groups perform well across all small inputs
but do poorly on larger-size inputs.

Figure 3: Running time for large instances for Chicago

Figure 4: Running time for small instances for Anaheim

On nearly all tests, the algorithm ALG-WM with
twisted groups performed just as well or better than
ALG-WM. The difference in performance grows
with the number of shipments scheduled. On most
networks, this gap grows in size after 80 runs. This
observation agrees with our insight on twisted runs
and isolated runs.

3. While the quantum algorithm has a high overhead
cost depending on the size of the graph, it does not
grow very quickly appearing to be near constant.

Part of the reason is that in the QUBO formula-
tion, most of the variables come from the initial
graph, thus adding more runs can only make little
difference in the scales of the QUBO problem.
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Figure 5: Running time for large instances for Anaheim

Figure 6: Running time for small instances for Eastern
Massachusetts

4. For all the algorithms over various networks, we
observe that increasing the number of hubs of the
input graph can shift to the point that the quantum
algorithm and ALG-IP outperform the ALG-WM
with twisted runs, in terms of running time.

On algorithm selection. To capture an algo-
rithm’s suitability on various input instances, we define
a test’s shipment density, the ratio between the number
of shipments and the number of nodes in the overlay-
ing network. We observe that the tests with high ship-
ment densities generate more bender cuts (Figure 13)
and thus for such input instances, algorithms converge
to the optimal solutions quickly. That is to say, for
graphs with ‘denser’ runs, ALG-IP and the quantum
algorithm run faster. At the same time, the opposite

Figure 7: Running time for large instances for Eastern
Massachusetts

Figure 8: Running time for small instances for Winnipeg

effect occurs over the tests with low shipment densities.
They generate fewer Benders cuts and converge more
slowly. Note that we discover that the quantum algo-
rithm performs far slower than the classical algorithms
over the small input sizes, and thus was omitted from
the graph for better presentation.

5 Conclusions

In this paper, we consider the shipment rerouting prob-
lem. We give two classical algorithms, a 0-1 integer lin-
ear program and a weighted matching algorithm based
on a key concept among transportation requests. The
concepts of twisted runs and isolated runs lead to fast
scalable computing for small/medium or sparse input
instances. Our next step of research is to develop

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 9: Running time for large instances for Winnipeg

Figure 10: Running time for small instances for
Barcelona

fast quantum algorithms for this problem. Motivated
by the fact that the branch-and-bound quantum algo-
rithms [15, 3] have been studied and in some cases yield
running times that are substantially better than naively
using the Grover’s algorithm, we design a variational
quantum algorithm for the branch-and-price framework.
We are going to compare this quantum approximation
optimization algorithm against the proposed solutions
in this work.
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