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What is Early Fault Tolerance (EFT)?

e Bridging the Gap: EFT is the era transitioning from NISQ (noisy,
intermediate-scale quantum) to FTQC (fully fault-tolerant quantum).
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What is Early Fault Tolerance (EFT)?

e Bridging the Gap: EFT is the era transitioning from NISQ (noisy,
intermediate-scale quantum) to FTQC (fully fault-tolerant quantum).

o Practical Goal: Achieve practical quantum advantage despite
hardware limitations (limited qubits, circuit depth, and error).

@ Key Focus: Develop algorithms with provable performance that are
resource-efficient to be viable on existing quantum hardware.
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Chemistry Problem

@ The Computational Challenge: Simulating quantum system is
intractable for classical computers beyond few particles.
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EFT for Chemistry Problems

@ The Computational Challenge: Simulating quantum system is
intractable for classical computers beyond few particles.

@ Quantities of Interest: We want to use quantum computers to
estimate quantities of the form Tr[pf(A)] and Tr[f(A)pf(A)T O]
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@ The Computational Challenge: Simulating quantum system is
intractable for classical computers beyond few particles.

@ Quantities of Interest: We want to use quantum computers to
estimate quantities of the form Tr[pf(A)] and Tr[f(A)pf(A)T O]

o f(A) = A7l — solve linear systems and estimate Green's function
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EFT for Chemistry Problems

@ The Computational Challenge: Simulating quantum system is
intractable for classical computers beyond few particles.

@ Quantities of Interest: We want to use quantum computers to
estimate quantities of the form Tr[pf(A)] and Tr[f(A)pf(A)T O]

o f(A) = A7l — solve linear systems and estimate Green's function

o f(A) = ©4(A) — find the ground state energy using Phase Estimation.
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Key EFT Algorithmic Examples

e Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.
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Key EFT Algorithmic Examples

e Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.

e Wan et al. [2] (QPE): Uses randomized techniques for one ancilla
qubit and shorter circuits, processing multiple runs statistically.
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Key EFT Algorithmic Examples

e Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.

e Wan et al. [2] (QPE): Uses randomized techniques for one ancilla
qubit and shorter circuits, processing multiple runs statistically.

o Wang et al. [3] (Linear Algebra): Employs qubit-efficient and
randomized methods to reduce logical qubit requirements.
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e Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.

e Wan et al. [2] (QPE): Uses randomized techniques for one ancilla
qubit and shorter circuits, processing multiple runs statistically.

o Wang et al. [3] (Linear Algebra): Employs qubit-efficient and
randomized methods to reduce logical qubit requirements.

A common theme is that, as shown by [1]-[3], we can estimate target
quantities using fewer quantum resources (qubits and gates) by increasing
classical post-processing or runtime.
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Key EFT Algorithmic Examples

e Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.

e Wan et al. [2] (QPE): Uses randomized techniques for one ancilla
qubit and shorter circuits, processing multiple runs statistically.

o Wang et al. [3] (Linear Algebra): Employs qubit-efficient and
randomized methods to reduce logical qubit requirements.

A common theme is that, as shown by [1]-[3], we can estimate target
quantities using fewer quantum resources (qubits and gates) by increasing
classical post-processing or runtime.

All these techniques use Tr[Ze'T] which we estimate with our algorithm.
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Background
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Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.
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e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):
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Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):

o Approximates continuous time evolution e~""* by decomposing the
Hamiltonian H =} H; into simple, implementable terms.
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Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):

o Approximates continuous time evolution e~""* by decomposing the
Hamiltonian H =} H; into simple, implementable terms.

o Example: 1st-order Trotter e(A*B)t v (eAt/eBt/M)" 1 O(2/n).
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Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):
o Approximates continuous time evolution e~""* by decomposing the
Hamiltonian H =} H; into simple, implementable terms.
o Example: 1st-order Trotter e(A*B)t v (eAt/eBt/M)" 1 O(2/n).

—iH;jt/n

o Implemented using native quantum gates for each e term.
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Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):
o Approximates continuous time evolution e~""* by decomposing the
Hamiltonian H =} H; into simple, implementable terms.
o Example: 1st-order Trotter e(A*B)t v (eAt/eBt/M)" 1 O(2/n).

—iH;jt/n

o Implemented using native quantum gates for each e term.

@ The Precision Challenge:
o Standard Trotterization requires a high number of steps (n) for high
precision (), with error scaling poorly:

Steps ~ O(1/¢) (1st-order), ~ O(c~Y/P) (order p)

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 25, 2025



Quantum Time Evolution: Fundamentals & Challenges

e Quantum Time Evolution (e~"): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

e Trotterization (Product Formulas):
o Approximates continuous time evolution e~""* by decomposing the
Hamiltonian H =} H; into simple, implementable terms.
o Example: 1st-order Trotter e(A*B)t v (eAt/eBt/M)" 1 O(2/n).

—iH;jt/n

o Implemented using native quantum gates for each e term.

@ The Precision Challenge:

o Standard Trotterization requires a high number of steps (n) for high
precision (), with error scaling poorly:

Steps ~ O(1/¢) (1st-order), ~ O(c~Y/P) (order p)

o This leads to deep circuits, limiting applicability on near-term hardware.
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Why Trotter for Early Fault Tolerance?

Method Max Depth / Sample Sample Overhead
Qubitization [4] 0 (r AT + o8] ) O(1/¢2)
Product Formulae [5] | O (F(a£§$2)1/”)TlH/Pe’l/p) 0(1/£?)
Random Compiler [2] O(N°T?) 0(1/£?)
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@ Low qubit overhead: Requires no ancillas or block-encoding circuits.
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@ Low qubit overhead: Requires no ancillas or block-encoding circuits.
o Simple to compile: Operators decompose naturally into native gates.

@ Sub-quadratic time complexity compared to Random Compiler
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Why Trotter for Early Fault Tolerance?

Method Max Depth / Sample Sample Overhead
Qubitization [4] 0 (r AT + o8] ) O(1/¢2)
Product Formulae [5] | O (F(a£§$2)1/”)TlH/Pa’l/p) 0(1/£?)
Random Compiler [2] O(N°T?) 0(1/£?)

@ Low qubit overhead: Requires no ancillas or block-encoding circuits.
o Simple to compile: Operators decompose naturally into native gates.
@ Sub-quadratic time complexity compared to Random Compiler

o Commutator scaling: Errors scale with nested commutators, which
are often small in realistic systems. Performs substantially better
when Acomm << ||H|1
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Our Algorithm and Results
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Applying Richardson Extrapolation on Trotter Formulas

@ Classical Extrapolation for Precision:
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Applying Richardson Extrapolation on Trotter Formulas

@ Classical Extrapolation for Precision:
e Goal: Improve error scaling without increasing quantum circuit depth.
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Applying Richardson Extrapolation on Trotter Formulas

@ Classical Extrapolation for Precision:
e Goal: Improve error scaling without increasing quantum circuit depth.

e Perform quantum simulations at multiple Trotter step sizes and then
classically extrapolate these results to for true evolution (§ — 0).

Observable estimate (O);

A

Extrapolated -
(0)f ¢

! ! \

4
step size

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 25, 2025



Comparisons with our Algorithm

Method Max Depth / Sample Sample Overhead
Qubitization [4] O (r[AT + 20 T) O(1/¢2)
Product Formulae [5] | O <F(a£§$r1n))1/p)T”l/ps’l/”) 0(1/€?)
Random Compiler [2] O(N’T?) 0O(1/€%)

Our Algorithm O (T(Acomm T) /P (log(1/€))?) | O ((loglog(1/e))?/e?)

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 25, 2025



Comparisons with our Algorithm

Method Max Depth / Sample Sample Overhead
Qubitization [4] O (r[AT + 20 T) O(1/¢2)
Product Formulae [5] | O <F(a£§$r1n))1/p)T”l/ps’l/”) 0(1/€?)
Random Compiler [2] O(N’T?) 0O(1/€%)

Our Algorithm O (T(Acomm T) /P (log(1/€))?) | O ((loglog(1/e))?/e?)

_1 )
o Exponential improvement on ¢ 7 scaling compared Trotter.
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Comparisons with our Algorithm

Method Max Depth / Sample Sample Overhead
Qubitization [4] O (r[AT + 20 T) O(1/¢2)
Product Formulae [5] | O (r(a£’3$3,2)1/f’) T”l/ps’l/”) 0(1/€?)
Random Compiler [2] O(N’T?) 0O(1/€%)

Our Algorithm O (T(Acomm T) /P (log(1/€))?) | O ((loglog(1/e))?/e?)

_1 )
o Exponential improvement on ¢ 7 scaling compared Trotter.

o Efficient postprocessing: Advantage achieved purely classically.
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Method Max Depth / Sample Sample Overhead
Qubitization [4] O (r[AT + 20 T) O(1/¢2)
Product Formulae [5] | O (r(a£§$3,2)1/f’) T”l/ps’l/”) 0(1/€?)
Random Compiler [2] O(N’T?) 0O(1/€%)

Our Algorithm O (T(Acomm T) /P (log(1/€))?) | O ((loglog(1/e))?/e?)

_1 _
o Exponential improvement on ¢ 7 scaling compared Trotter.
o Efficient postprocessing: Advantage achieved purely classically.

o Hardware-friendly: Well-suited to NISQ-era devices — shorter
circuits + more measurements. Achieves comparable performance to
asymptotically better but more resource efficient schemes.
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Comparisons with our Algorithm

Method Max Depth / Sample Sample Overhead
Qubitization [4] O (r[AT + 20 T) O(1/¢2)
Product Formulae [5] | O (r(a£§$3,2)1/f’) T”l/ps’l/”) 0(1/€?)
Random Compiler [2] O(N’T?) 0O(1/€%)

Our Algorithm O (T(Acomm T) /P (log(1/€))?) | O ((loglog(1/e))?/e?)

_1 _
o Exponential improvement on ¢ 7 scaling compared Trotter.
o Efficient postprocessing: Advantage achieved purely classically.

o Hardware-friendly: Well-suited to NISQ-era devices — shorter
circuits + more measurements. Achieves comparable performance to
asymptotically better but more resource efficient schemes.

o Key Question: Can this be applied to matrix functions?
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Tr[f(A)p F(A)TO] and Tr[f(A)p]
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)TO] and Tr[f(A)p]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)TO] and Tr[f(A)p]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
o Standard Richardson+Trotter methods only apply to f(A) = e/t [6]
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)TO] and Tr[f(A)p]
@ Occurs in quantum algorithms (HHL, QPE, etc.).

o Standard Richardson+Trotter methods only apply to f(A) = e/t [6]

@ Represent f(A) via Fourier series to reduce to exponentials.
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)TO] and Tr[f(A)p]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
o Standard Richardson+Trotter methods only apply to f(A) = e/t [6]
@ Represent f(A) via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:
rI\I,[ethlpe—thg O]
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)T O] and Tr[f(A)p]
@ Occurs in quantum algorithms (HHL, QPE, etc.).

o Standard Richardson+Trotter methods only apply to f(A) = e/t [6]

@ Represent f(A) via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:
rI\I,[ethlpe—thg O]

As an intermediate step, we develop and prove algorithms:

Tr[Zf(A)] = zm: c Tr[Ze™ %]
k=1
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:
Tr[f(A)p F(A)T O] and Tr[f(A)p]

@ Occurs in quantum algorithms (HHL, QPE, etc.).
o Standard Richardson+Trotter methods only apply to f(A) = e/t [6]

@ Represent f(A) via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:
rI\I,[ethlpe—thg O]

As an intermediate step, we develop and prove algorithms:

Tr[Zf(A)] = zm: c Tr[Ze™ %]
k=1

We have it when Z = p, and extend to when || Z||; is bounded.
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Richardson Extrapolation for each T

For each ty, estimate Tr[ZeA*] via Richardson-extrapolated circuits.

Tr[Ze™] = > b TH{ZPY5(sit)]
j=1

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 25, 2025



Richardson Extrapolation for each T

For each ty, estimate Tr[ZeA*] via Richardson-extrapolated circuits.

Tr[Ze™] = > b TH{ZPY5(sit)]
j=1

Each Tr[ZPY/%(s;tx)] is estimated by sampling from Hadamard circuits
like the one below:

o) A}

) ——

T T m m e e e e e e e s s m - m—— - === ~

H

—o
: —

repeat rj := 1/s; times
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Algorithm for Estimatin

Algorithm:
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:
@ Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] =D Y cbTe[ZPY (st )]
k=1 j=1
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:
@ Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] =D Y cbTe[ZPY (st )]
k=1 j=1

@ Sample pair (k,j) with probability Lo fl, where Z = Zk,j |cibj
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:

@ Express trace as double sum over Fourier and Richardson terms:

Te[ZF(A)] = chkb Te[ZPY* (sjt;)]

k=1 j=1

@ Sample pair (k,j) with probability Lo fl, where Z = Zk,j |cibj

@ Estimate Tr[ZPY/%(s;tx)] via Hadamard tests
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:
@ Express trace as double sum over Fourier and Richardson terms:
K m
Te[ZF(A)] =D Y cbTe[ZPY (st )]
k=1 j=1

@ Sample pair (k,j) with probability Lo fl, where Z = Zk,j |cibj
@ Estimate Tr[ZPY/%(s;tx)] via Hadamard tests

@ Return scaled, signed estimator based on samples
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:

@ Express trace as double sum over Fourier and Richardson terms:

Te[ZF(A)] = chkb Te[ZPY* (sjt;)]

k=1 j=1

@ Sample pair (k,j) with probability Lo f|, where Z =37, - |ckbj|
@ Estimate Tr[ZPY/%(s;tx)] via Hadamard tests
@ Return scaled, signed estimator based on samples

Gate complexity (per sample) O (F log(c/e) - (amaXT)\mmmtmax)H%),
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Algorithm for Estimating Tr[Zf(A)]

Algorithm:

@ Express trace as double sum over Fourier and Richardson terms:

Te[ZF(A)] = Z Z ckb Tr[ZP% (sit,)]

k=1 j=1
@ Sample pair (k,j) with probability Lo f|, where Z =37, - |ckby
@ Estimate Tr[ZPY/%(s;tx)] via Hadamard tests
@ Return scaled, signed estimator based on samples
Gate complexity (per sample) O (F log(c/e) - (amaxT)\mmmtmax)lJr%),

Sample complexity O <”Z||§C2(|°g2l°g(1/5))2 - log (%))

&
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Key Algorithmic Techniques

© Fourier Expansion: to represent Tr[Zf(A)] term as a sum of
Tr[ZeHT] terms.
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Key Algorithmic Techniques

© Fourier Expansion: to represent Tr[Zf(A)] term as a sum of
Tr[ZeHT] terms.

@ Error Series Representation:

Tr [z Pl/S(sT)] " [Z eiAT} +jEJZZ>p STr[Z Ejya k(T)HTY[Z Fi(T, 5)]

allows to use and analyze Richardson extrapolation (to get coefficients
{bj}_1 and schedule {s;}T" ;) for improved gate complexity.
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Key Algorithmic Techniques

© Fourier Expansion: to represent Tr[Zf(A)] term as a sum of
Tr[ZeHT] terms.

@ Error Series Representation:

Tr [z Pl/S(sT)] " [Z eiAT} +jEJZZ>p STr[Z Ejya k(T)HTY[Z Fi(T, 5)]

allows to use and analyze Richardson extrapolation (to get coefficients
{bj}_1 and schedule {s;}T" ;) for improved gate complexity.

© Randomization: improves sample overhead for circuits
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Applications
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Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
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Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
@ Approximate CDF: Construct the approximate CDF:

C(x) = Tr[pO(xI — kH)]

where © is a quantum filter approximating the Heaviside function.
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Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
@ Approximate CDF: Construct the approximate CDF:

C(x) = Tr[pO(xI — kH)]
where © is a quantum filter approximating the Heaviside function.

@ Ground Energy Estimation: By examining the behavior of f(xi u),
we can identify a value x* that approximates the ground energy Ejy.

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for August 25, 2025



Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
@ Approximate CDF: Construct the approximate CDF:

C(x) = Tr[pO(xI — kH)]
where © is a quantum filter approximating the Heaviside function.

@ Ground Energy Estimation: By examining the behavior of f(xi u),
we can identify a value x* that approximates the ground energy Ejy.

© Binary Search: A binary search is used to efficiently find Eo,
requiring O(log(1/u)) evaluations of C(x).
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Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
@ Approximate CDF: Construct the approximate CDF:

C(x) = Tr[pO(xI — kH)]
where © is a quantum filter approximating the Heaviside function.

@ Ground Energy Estimation: By examining the behavior of f(xi u),
we can identify a value x* that approximates the ground energy Ejy.

© Binary Search: A binary search is used to efficiently find Eo,
requiring O(log(1/u)) evaluations of C(x).
Resource Requirements: To estimate Ey to precision &:

~ 1
o Gate Cost: Cgare = O <r (T/\?M)Hp)
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Ground Energy Estimation via QPE (f(A) = ©,(A))

Goal: Estimate the ground energy Ey of a Hamiltonian H.
@ Approximate CDF: Construct the approximate CDF:

C(x) = Tr[pO(xI — kH)]
where © is a quantum filter approximating the Heaviside function.

@ Ground Energy Estimation: By examining the behavior of f(xi u),
we can identify a value x* that approximates the ground energy Ejy.

© Binary Search: A binary search is used to efficiently find Eo,
requiring O(log(1/u)) evaluations of C(x).
Resource Requirements: To estimate Ey to precision &:

~ 1
o Gate Cost: Cgare = O <r (T/\?M)Hp)

o Sample Cost: Campie = O (%)
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Estimating Green's Function (f(A) = A™1)

Goal: Compute the Green's function, which describes how a quantum

system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.
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Estimating Green's Function (f(A) = A™1)

Goal: Compute the Green's function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

@ We estimate the resolvent operator:

R(w + iTbroads H) = (@ + iThroad — H)
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Estimating Green's Function (f(A) = A™1)

Goal: Compute the Green's function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

@ We estimate the resolvent operator:
R(w + iThroads H) = (@ + iTbroad — H) ™

@ A positive broadening factor (I',0.q > 0) is included to ensure the
calculation converges.
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Goal: Compute the Green's function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

@ We estimate the resolvent operator:

R(w + iTbroads H) = (@ + iThroad — H)

@ A positive broadening factor (I',0.q > 0) is included to ensure the
calculation converges.

Resource Requirements: Compute the Green's function to precision &:
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Estimating Green's Function (f(A) = A™1)

Goal: Compute the Green's function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

@ We estimate the resolvent operator:

R(w + iTbroads H) = (@ + iThroad — H)

@ A positive broadening factor (I',0.q > 0) is included to ensure the
calculation converges.

Resource Requirements: Compute the Green's function to precision &:

~ 1 14+

o Gate Cost: Cgate = O | T (amaXT)\comm )

IMbroad

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for

August 25, 2025 17 /27



Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for

Estimating Green's Function (f(A) =

Goal: Compute the Green's function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

@ We estimate the resolvent operator:

R(w + il broad, ) (W + 1T broad — I:I)_l

@ A positive broadening factor (I',0.q > 0) is included to ensure the
calculation converges.

Resource Requirements: Compute the Green's function to precision &:
~ 1 14+
o Gate Cost: Cgate = O | T (amaXT)\commT)

road

o Sample Cost: Csample = 0 <r27€2>
broad
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Refinements
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Partial Randomization Motivation

1

10* 4

Many Hamiltonians have relatively few high-weight terms.

1071

10!

10— 4

[hy]

1[}—ii .

10t 4

10-5 4

[P
.

]

/

.

/

{

/

1075 4

1077

10" 4

10t 4

104 |
10}

10°

T T
1000 1500

" w10t

10-7
0

10-7

and A. Harrow [7]

Arul Rhik Mazumder

Co-mel

T
500
1

'Image from J. Giinther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl,

r: Samson WEarly Fault-Tolerant Quantum Algorithms for




1

Partial Randomization Motivation

10" 4

10* 4

Many Hamiltonians have relatively few high-weight terms.
107! -

10!
1071 4
1075 = T
w1

[hy]

10t 4

10— 4
_‘m—ii .

1{]—:5_
w’ 1w 10t
1075 4
T
1500

T
1000

[P

T
500
1

10-7

107% 4

kil 10.0
= 10°

1077 A=
0.0 R
o The main plot shows exponential fit to the tail. (|h| ~ Ae™?")

19/27

Yimage from J. Giinther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christand|,
August 25, 2025

and A. Harrow [7]

Arul Rhik Mazumder Co-mentor: Samson WEarly Fault-Tolerant Quantum Algorithms for



10* 4
107!
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Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:

) —E o—iHt _|__—|_ o—iHLt _{ W, }:7

repeat r times
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Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:

repeat r times

To implement each W,,, we use the Randomized Taylor Expansion [2].
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Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:

repeat r times

To implement each W,,, we use the Randomized Taylor Expansion [2].
We apply Richardson-extrapolation on the partially random circuits for:

Coate = O (LD(TAcomm T)'5 log? <1> )2 T2)

€
1 1\)?
Csample =0 <82 <|og|og (€>> >
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Fermion Systems

For systems in an n-fermion subspace, we tighten analysis with the
fermionic semi-norm.
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Fermion Systems

For systems in an n-fermion subspace, we tighten analysis with the
fermionic semi-norm.

@ Operators are number-preserving (map 7-electron states to
n-electron states).
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Fermion Systems

For systems in an n-fermion subspace, we tighten analysis with the
fermionic semi-norm.

@ Operators are number-preserving (map 7-electron states to
n-electron states).

o Gate complexity now dependent on the fermionic semi-norms of
nested commutators.
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Fermion Systems

For systems in an n-fermion subspace, we tighten analysis with the
fermionic semi-norm.
@ Operators are number-preserving (map 7-electron states to
n-electron states).

o Gate complexity now dependent on the fermionic semi-norms of
nested commutators.

o Same bounds but with A% defined from am < ccomm [8]-[10]
which are generally tighter than standard commutator bounds.
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o 1D extrapolation: Note that the sample complexity

G =0 (5 (svs (1))

Can we improve the (log Iog(%))4 to (log Iog(%))2 by extrapolating
directly over Tr[e"T pe="HT' O] instead of Tr[Ze™T]?
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o 1D extrapolation: Note that the sample complexity

G =0 (5 (svs (1))

Can we improve the (log Iog(%))4 to (log Iog(%))2 by extrapolating
directly over Tr[e"T pe="HT' O] instead of Tr[Ze™T]?

@ Resource estimation: Can we do resource estimates for a for more
chemical systems (Systems in the Low-Energy Subspace)?
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o 1D extrapolation: Note that the sample complexity

G =0 (5 (svs (1))

Can we improve the (log Iog(%))4 to (log Iog(%))2 by extrapolating
directly over Tr[e"T pe="HT' O] instead of Tr[Ze™T]?

@ Resource estimation: Can we do resource estimates for a for more
chemical systems (Systems in the Low-Energy Subspace)?

@ Analyzing constant factors in the asymptotics for more specific
performance estimates.
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