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What is Early Fault Tolerance (EFT)?

Bridging the Gap: EFT is the era transitioning from NISQ (noisy,
intermediate-scale quantum) to FTQC (fully fault-tolerant quantum).

Practical Goal: Achieve practical quantum advantage despite
hardware limitations (limited qubits, circuit depth, and error).

Key Focus: Develop algorithms with provable performance that are
resource-efficient to be viable on existing quantum hardware.
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EFT for Chemistry Problems

The Computational Challenge: Simulating quantum system is
intractable for classical computers beyond few particles.

Quantities of Interest: We want to use quantum computers to
estimate quantities of the form Tr[ρf (A)] and Tr[f (A)ρf (A)†O]

f (A) = A−1 → solve linear systems and estimate Green’s function

f (A) = Θx(A) → find the ground state energy using Phase Estimation.
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Key EFT Algorithmic Examples

Lin and Tong [1] (QPE): Achieves Heisenberg-limited precision with
one ancilla qubit and heavy classical post-processing.

Wan et al. [2] (QPE): Uses randomized techniques for one ancilla
qubit and shorter circuits, processing multiple runs statistically.

Wang et al. [3] (Linear Algebra): Employs qubit-efficient and
randomized methods to reduce logical qubit requirements.

A common theme is that, as shown by [1]–[3], we can estimate target
quantities using fewer quantum resources (qubits and gates) by increasing
classical post-processing or runtime.

All these techniques use Tr[Ze iHT ] which we estimate with our algorithm.
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Background
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Quantum Time Evolution: Fundamentals & Challenges

Quantum Time Evolution (e−iHt): A core building block for many
quantum algorithms, including QPE, HHL, and general simulation.

Trotterization (Product Formulas):
Approximates continuous time evolution e−iHt by decomposing the
Hamiltonian H =

∑
Hj into simple, implementable terms.

Example: 1st-order Trotter e(A+B)t ≈
(
eAt/neBt/n

)n
+O(t2/n).

Implemented using native quantum gates for each e−iHj t/n term.

The Precision Challenge:
Standard Trotterization requires a high number of steps (n) for high
precision (ε), with error scaling poorly:

Steps ∼ O(1/ε) (1st-order), ∼ O(ε−1/p) (order p)

This leads to deep circuits, limiting applicability on near-term hardware.
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Why Trotter for Early Fault Tolerance?

Method Max Depth / Sample Sample Overhead

Qubitization [4] O
(
Γ
[
ΛT + log(1/ε)

log log(1/ε)

])
O(1/ε2)

Product Formulae [5] O
(
Γ(α

(p+1)
comm)1/p)T 1+1/pε−1/p

)
O(1/ε2)

Random Compiler [2] O(Λ2T 2) O(1/ε2)

Low qubit overhead: Requires no ancillas or block-encoding circuits.

Simple to compile: Operators decompose naturally into native gates.

Sub-quadratic time complexity compared to Random Compiler

Commutator scaling: Errors scale with nested commutators, which
are often small in realistic systems. Performs substantially better
when λcomm << ∥H∥1
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Our Algorithm and Results
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Applying Richardson Extrapolation on Trotter Formulas

Classical Extrapolation for Precision:

Goal: Improve error scaling without increasing quantum circuit depth.

Perform quantum simulations at multiple Trotter step sizes and then
classically extrapolate these results to for true evolution (δ → 0).

step size δ

Observable estimate ⟨O⟩t

δ1 δ2

⟨O⟩(ex)t

Extrapolated
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Comparisons with our Algorithm

Method Max Depth / Sample Sample Overhead

Qubitization [4] O
(
Γ
[
ΛT + log(1/ε)

log log(1/ε)

])
O(1/ε2)

Product Formulae [5] O
(
Γ(α

(p+1)
comm)1/p)T 1+1/pε−1/p

)
O(1/ε2)

Random Compiler [2] O(Λ2T 2) O(1/ε2)

Our Algorithm O
(
Γ(λcommT )1+1/p(log(1/ε))2

)
O
(
(log log(1/ε))2/ε2

)

Exponential improvement on ε−
1
p scaling compared Trotter.

Efficient postprocessing: Advantage achieved purely classically.

Hardware-friendly: Well-suited to NISQ-era devices — shorter
circuits + more measurements. Achieves comparable performance to
asymptotically better but more resource efficient schemes.

Key Question: Can this be applied to matrix functions?
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Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

Tr[f (A)ρ f (A)†O] and Tr[f (A)ρ]

Occurs in quantum algorithms (HHL, QPE, etc.).

Standard Richardson+Trotter methods only apply to f (A) = e−iAt [6]

Represent f (A) via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:

Tr[e iHt1ρ e−iHt2O]

As an intermediate step, we develop and prove algorithms:

Tr[Zf (A)] =
m∑

k=1

ckTr[Ze
iAtk ]

We have it when Z = ρ, and extend to when ∥Z∥1 is bounded.
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Richardson Extrapolation for each Tr[Ze iAtk ]

For each tk , estimate Tr[Ze iAtk ] via Richardson-extrapolated circuits.

Tr[Ze iAtk ] =
m∑
j=1

bjTr[ZP1/sj (sj tk)]

Each Tr[ZP1/sj (sj tk)] is estimated by sampling from Hadamard circuits
like the one below:

|0⟩ H H

|ψ⟩ e−iH1t e−iH2t · · · e−iHN t

repeat rj := 1/sj times
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Algorithm for Estimating Tr[Zf (A)]

Algorithm:

1 Express trace as double sum over Fourier and Richardson terms:

Tr[Zf (A)] =
K∑

k=1

m∑
j=1

ckbjTr[ZP1/sj (sj tk)]

2 Sample pair (k , j) with probability
|ckbj |
Z , where Z =

∑
k,j |ckbj |

3 Estimate Tr[ZP1/sj (sj tk)] via Hadamard tests

4 Return scaled, signed estimator based on samples

Gate complexity (per sample) O
(
Γ log(c/ε) · (amaxΥλcommtmax)

1+ 1
p

)
,

Sample complexity O
(
∥Z∥21c2(log log(1/ε))2

ε2
· log

(
1
δ

))
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Key Algorithmic Techniques

1 Fourier Expansion: to represent Tr[Zf (A)] term as a sum of
Tr[Ze iHT ] terms.

2 Error Series Representation:

Tr
[
Z P1/s(sT )

]
= Tr

[
Z e iAT

]
+

∑
j∈σZ+≥p

s jTr[Z Ẽj+1,K (T )]+Tr[Z F̃K (T , s)]

allows to use and analyze Richardson extrapolation (to get coefficients
{bj}mj=1 and schedule {sj}mj=1) for improved gate complexity.

3 Randomization: improves sample overhead for circuits
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Applications
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Ground Energy Estimation via QPE (f (A) = Θx(A))

Goal: Estimate the ground energy E0 of a Hamiltonian H.

1 Approximate CDF: Construct the approximate CDF:

C̃ (x) = Tr[ρ Θ̃(xI − κH)]

where Θ̃ is a quantum filter approximating the Heaviside function.

2 Ground Energy Estimation: By examining the behavior of C̃ (x ± u),
we can identify a value x∗ that approximates the ground energy E0.

3 Binary Search: A binary search is used to efficiently find E0,
requiring O(log(1/u)) evaluations of C̃ (x).

Resource Requirements: To estimate E0 to precision ε:

Gate Cost: Cgate = Õ
(
Γ
(
Υλcomm

ε

)1+ 1
p

)
Sample Cost: Csample = Õ

(
1
η2

)
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(
Γ
(
Υλcomm

ε

)1+ 1
p

)

Sample Cost: Csample = Õ
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Estimating Green’s Function (f (A) = A−1)

Goal: Compute the Green’s function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.

Method:

We estimate the resolvent operator:

R(ω + iΓbroad, Ĥ) = (ω + iΓbroad − Ĥ)−1

A positive broadening factor (Γbroad > 0) is included to ensure the
calculation converges.

Resource Requirements: Compute the Green’s function to precision ε:

Gate Cost: Cgate = Õ
(
Γ
(
amaxΥλcomm

1
Γbroad

)1+ 1
p

)
Sample Cost: Csample = Õ

(
1

Γ2broad ε
2

)
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R(ω + iΓbroad, Ĥ) = (ω + iΓbroad − Ĥ)−1
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(
1

Γ2broad ε
2

)

Arul Rhik Mazumder Co-mentor: Samson Wang Mentor: John PreskillEarly Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter ExtrapolationAugust 25, 2025 17 / 27



Estimating Green’s Function (f (A) = A−1)

Goal: Compute the Green’s function, which describes how a quantum
system responds to perturbations. This is crucial for calculating spectral
properties like excitation energies.
Method:

We estimate the resolvent operator:
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properties like excitation energies.
Method:

We estimate the resolvent operator:

R(ω + iΓbroad, Ĥ) = (ω + iΓbroad − Ĥ)−1

A positive broadening factor (Γbroad > 0) is included to ensure the
calculation converges.

Resource Requirements: Compute the Green’s function to precision ε:

Gate Cost: Cgate = Õ
(
Γ
(
amaxΥλcomm

1
Γbroad

)1+ 1
p

)

Sample Cost: Csample = Õ
(

1
Γ2broad ε

2

)
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Refinements
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Partial Randomization Motivation

Many Hamiltonians have relatively few high-weight terms. 1

The main plot shows exponential fit to the tail. (|hℓ| ≈ Ae−bℓ)

The insert shows power law fit for the large terms. (|hℓ| ≈ C · ℓ−α)

1Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl,
and A. Harrow [7]
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Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:

|0⟩ H H

|ψ⟩ e−iH1t · · · e−iHLt Wm

repeat r times

To implement each Wm we use the Randomized Taylor Expansion [2].
We apply Richardson-extrapolation on the partially random circuits for:

Cgate = O
(
LD(ΥλcommT )1+

1
p log2

(
1

ε

)
+ λ2RT

2

)
Csample = O

(
1

ε2

(
log log

(
1

ε

))2
)
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Fermion Systems

For systems in an η-fermion subspace, we tighten analysis with the
fermionic semi-norm.

Operators are number-preserving (map η-electron states to
η-electron states).

Gate complexity now dependent on the fermionic semi-norms of
nested commutators.

Same bounds but with λ
(η)
comm defined from α

(η)
comm < αcomm [8]–[10]

which are generally tighter than standard commutator bounds.
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Next Steps:

1D extrapolation: Note that the sample complexity

Csample = O

(
1

ε2

(
log log

(
1

ε

))4
)

Can we improve the
(
log log

(
1
ε

))4
to
(
log log

(
1
ε

))2
by extrapolating

directly over Tr[e iHTρe−iHT ′
O] instead of Tr[Ze iHT ]?

Resource estimation: Can we do resource estimates for a for more
chemical systems (Systems in the Low-Energy Subspace)?

Analyzing constant factors in the asymptotics for more specific
performance estimates.
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