

Early Fault-Tolerant Quantum Algorithms for Matrix Functions via Trotter Extrapolation

Arul Rhik Mazumder

Co-mentor: Samson Wang

Mentor: John Preskill

August 25, 2025

What is Early Fault Tolerance (EFT)?

- **Bridging the Gap:** EFT is the era transitioning from **NISQ** (noisy, intermediate-scale quantum) to **FTQC** (fully fault-tolerant quantum).

What is Early Fault Tolerance (EFT)?

- **Bridging the Gap:** EFT is the era transitioning from **NISQ** (noisy, intermediate-scale quantum) to **FTQC** (fully fault-tolerant quantum).
- **Practical Goal:** Achieve practical quantum advantage **despite hardware limitations** (limited qubits, circuit depth, and error).

What is Early Fault Tolerance (EFT)?

- **Bridging the Gap:** EFT is the era transitioning from **NISQ** (noisy, intermediate-scale quantum) to **FTQC** (fully fault-tolerant quantum).
- **Practical Goal:** Achieve practical quantum advantage **despite hardware limitations** (limited qubits, circuit depth, and error).
- **Key Focus:** Develop algorithms with provable performance that are **resource-efficient** to be viable on existing quantum hardware.

- **The Computational Challenge:** Simulating quantum system is **intractable** for classical computers beyond few particles.

EFT for Chemistry Problems

- **The Computational Challenge:** Simulating quantum system is **intractable** for classical computers beyond few particles.
- **Quantities of Interest:** We want to use quantum computers to estimate quantities of the form $\text{Tr}[\rho f(A)]$ and $\text{Tr}[f(A)\rho f(A)^\dagger O]$

EFT for Chemistry Problems

- **The Computational Challenge:** Simulating quantum system is **intractable** for classical computers beyond few particles.
- **Quantities of Interest:** We want to use quantum computers to estimate quantities of the form $\text{Tr}[\rho f(A)]$ and $\text{Tr}[f(A)\rho f(A)^\dagger O]$
 - $f(A) = A^{-1} \rightarrow$ solve linear systems and estimate Green's function

- **The Computational Challenge:** Simulating quantum system is **intractable** for classical computers beyond few particles.
- **Quantities of Interest:** We want to use quantum computers to estimate quantities of the form $\text{Tr}[\rho f(A)]$ and $\text{Tr}[f(A)\rho f(A)^\dagger O]$
 - $f(A) = A^{-1} \rightarrow$ solve linear systems and estimate Green's function
 - $f(A) = \Theta_x(A) \rightarrow$ find the ground state energy using Phase Estimation.

Key EFT Algorithmic Examples

- *Lin and Tong* [1] (QPE): Achieves Heisenberg-limited precision with **one ancilla qubit** and heavy **classical post-processing**.

Key EFT Algorithmic Examples

- *Lin and Tong* [1] (QPE): Achieves Heisenberg-limited precision with **one ancilla qubit** and heavy **classical post-processing**.
- *Wan et al.* [2] (QPE): Uses **randomized techniques** for **one ancilla qubit** and **shorter circuits**, processing multiple runs statistically.

Key EFT Algorithmic Examples

- *Lin and Tong* [1] (QPE): Achieves Heisenberg-limited precision with **one ancilla qubit** and heavy **classical post-processing**.
- *Wan et al.* [2] (QPE): Uses **randomized techniques** for **one ancilla qubit** and **shorter circuits**, processing multiple runs statistically.
- *Wang et al.* [3] (Linear Algebra): Employs **qubit-efficient** and **randomized methods** to **reduce logical qubit requirements**.

Key EFT Algorithmic Examples

- *Lin and Tong* [1] (QPE): Achieves Heisenberg-limited precision with **one ancilla qubit** and heavy **classical post-processing**.
- *Wan et al.* [2] (QPE): Uses **randomized techniques** for **one ancilla qubit** and **shorter circuits**, processing multiple runs statistically.
- *Wang et al.* [3] (Linear Algebra): Employs **qubit-efficient** and **randomized methods** to **reduce logical qubit requirements**.

A common theme is that, as shown by [1]–[3], we can estimate target quantities using fewer quantum resources (qubits and gates) by increasing classical post-processing or runtime.

Key EFT Algorithmic Examples

- *Lin and Tong* [1] (QPE): Achieves Heisenberg-limited precision with **one ancilla qubit** and heavy **classical post-processing**.
- *Wan et al.* [2] (QPE): Uses **randomized techniques** for **one ancilla qubit** and **shorter circuits**, processing multiple runs statistically.
- *Wang et al.* [3] (Linear Algebra): Employs **qubit-efficient** and **randomized methods** to **reduce logical qubit requirements**.

A common theme is that, as shown by [1]–[3], we can estimate target quantities using fewer quantum resources (qubits and gates) by increasing classical post-processing or runtime.

All these techniques use $\text{Tr}[Ze^{iHT}]$ which we estimate with our algorithm.

Background

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**
 - Approximates continuous time evolution e^{-iHt} by decomposing the Hamiltonian $H = \sum H_j$ into simple, implementable terms.

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**
 - Approximates continuous time evolution e^{-iHt} by decomposing the Hamiltonian $H = \sum H_j$ into simple, implementable terms.
 - Example: 1st-order Trotter $e^{(A+B)t} \approx (e^{At/n} e^{Bt/n})^n + \mathcal{O}(t^2/n)$.

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**
 - Approximates continuous time evolution e^{-iHt} by decomposing the Hamiltonian $H = \sum H_j$ into simple, implementable terms.
 - Example: 1st-order Trotter $e^{(A+B)t} \approx (e^{At/n} e^{Bt/n})^n + \mathcal{O}(t^2/n)$.
 - Implemented using native quantum gates for each $e^{-iH_j t/n}$ term.

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**
 - Approximates continuous time evolution e^{-iHt} by decomposing the Hamiltonian $H = \sum H_j$ into simple, implementable terms.
 - Example: 1st-order Trotter $e^{(A+B)t} \approx (e^{At/n} e^{Bt/n})^n + \mathcal{O}(t^2/n)$.
 - Implemented using native quantum gates for each $e^{-iH_j t/n}$ term.
- **The Precision Challenge:**
 - Standard Trotterization requires a high number of steps (n) for high precision (ε), with error scaling poorly:
$$\text{Steps} \sim \mathcal{O}(1/\varepsilon) \text{ (1st-order), } \sim \mathcal{O}(\varepsilon^{-1/p}) \text{ (order } p\text{)}$$

- **Quantum Time Evolution (e^{-iHt}):** A core building block for many quantum algorithms, including QPE, HHL, and general simulation.
- **Trotterization (Product Formulas):**
 - Approximates continuous time evolution e^{-iHt} by decomposing the Hamiltonian $H = \sum H_j$ into simple, implementable terms.
 - Example: 1st-order Trotter $e^{(A+B)t} \approx (e^{At/n} e^{Bt/n})^n + \mathcal{O}(t^2/n)$.
 - Implemented using native quantum gates for each $e^{-iH_j t/n}$ term.
- **The Precision Challenge:**
 - Standard Trotterization requires a high number of steps (n) for high precision (ε), with error scaling poorly:
$$\text{Steps} \sim \mathcal{O}(1/\varepsilon) \text{ (1st-order)}, \quad \sim \mathcal{O}(\varepsilon^{-1/p}) \text{ (order } p\text{)}$$
 - This leads to deep circuits, limiting applicability on near-term hardware.

Why Trotter for Early Fault Tolerance?

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

Why Trotter for Early Fault Tolerance?

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

- **Low qubit overhead:** Requires no ancillas or block-encoding circuits.

Why Trotter for Early Fault Tolerance?

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

- **Low qubit overhead:** Requires no ancillas or block-encoding circuits.
- **Simple to compile:** Operators decompose naturally into native gates.

Why Trotter for Early Fault Tolerance?

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

- **Low qubit overhead:** Requires no ancillas or block-encoding circuits.
- **Simple to compile:** Operators decompose naturally into native gates.
- **Sub-quadratic time complexity** compared to Random Compiler

Why Trotter for Early Fault Tolerance?

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$

- **Low qubit overhead:** Requires no ancillas or block-encoding circuits.
- **Simple to compile:** Operators decompose naturally into native gates.
- **Sub-quadratic time complexity** compared to Random Compiler
- **Commutator scaling:** Errors scale with nested commutators, which are often small in realistic systems. Performs substantially better when $\lambda_{\text{comm}} \ll \|H\|_1$

Our Algorithm and Results

Applying Richardson Extrapolation on Trotter Formulas

- **Classical Extrapolation for Precision:**

Applying Richardson Extrapolation on Trotter Formulas

- **Classical Extrapolation for Precision:**

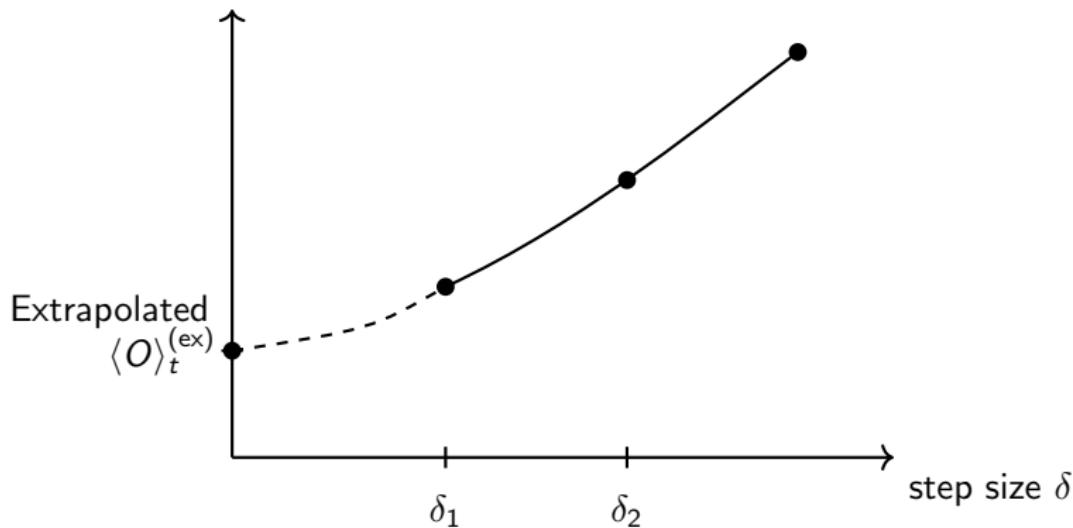
- **Goal:** Improve error scaling without increasing quantum circuit depth.

Applying Richardson Extrapolation on Trotter Formulas

- **Classical Extrapolation for Precision:**

- **Goal:** Improve error scaling without increasing quantum circuit depth.
- Perform quantum simulations at multiple Trotter step sizes and then **classically extrapolate** these results to for true evolution ($\delta \rightarrow 0$).

Observable estimate $\langle O \rangle_t$



Comparisons with our Algorithm

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

Comparisons with our Algorithm

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

- **Exponential improvement** on $\varepsilon^{-\frac{1}{p}}$ scaling compared Trotter.

Comparisons with our Algorithm

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

- **Exponential improvement** on $\varepsilon^{-\frac{1}{p}}$ scaling compared Trotter.
- **Efficient postprocessing:** Advantage achieved purely classically.

Comparisons with our Algorithm

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

- **Exponential improvement** on $\varepsilon^{-\frac{1}{p}}$ scaling compared Trotter.
- **Efficient postprocessing:** Advantage achieved purely classically.
- **Hardware-friendly:** Well-suited to NISQ-era devices — shorter circuits + more measurements. Achieves comparable performance to asymptotically better but more resource efficient schemes.

Comparisons with our Algorithm

Method	Max Depth / Sample	Sample Overhead
Qubitization [4]	$\mathcal{O}\left(\Gamma\left[\Lambda T + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right]\right)$	$\mathcal{O}(1/\varepsilon^2)$
Product Formulae [5]	$\mathcal{O}\left(\Gamma(\alpha_{\text{comm}}^{(p+1)})^{1/p} T^{1+1/p} \varepsilon^{-1/p}\right)$	$\mathcal{O}(1/\varepsilon^2)$
Random Compiler [2]	$\mathcal{O}(\Lambda^2 T^2)$	$\mathcal{O}(1/\varepsilon^2)$
Our Algorithm	$\mathcal{O}\left(\Gamma(\lambda_{\text{comm}} T)^{1+1/p} (\log(1/\varepsilon))^2\right)$	$\mathcal{O}\left((\log\log(1/\varepsilon))^2/\varepsilon^2\right)$

- **Exponential improvement** on $\varepsilon^{-\frac{1}{p}}$ scaling compared Trotter.
- **Efficient postprocessing:** Advantage achieved purely classically.
- **Hardware-friendly:** Well-suited to NISQ-era devices — shorter circuits + more measurements. Achieves comparable performance to asymptotically better but more resource efficient schemes.
- **Key Question:** Can this be applied to matrix functions?

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\text{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \text{Tr}[f(A)\rho]$$

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\text{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \text{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\text{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \text{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).
- Standard Richardson+Trotter methods only apply to $f(A) = e^{-iAt}$ [6]

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\text{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \text{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).
- Standard Richardson+Trotter methods only apply to $f(A) = e^{-iAt}$ [6]
- Represent $f(A)$ via Fourier series to reduce to exponentials.

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\mathrm{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \mathrm{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).
- Standard Richardson+Trotter methods only apply to $f(A) = e^{-iAt}$ [6]
- Represent $f(A)$ via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:

$$\mathrm{Tr}[e^{iHt_1}\rho e^{-iHt_2} O]$$

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\text{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \text{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).
- Standard Richardson+Trotter methods only apply to $f(A) = e^{-iAt}$ [6]
- Represent $f(A)$ via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:

$$\text{Tr}[e^{iHt_1}\rho e^{-iHt_2}O]$$

As an intermediate step, we develop and prove algorithms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^m c_k \text{Tr}[Ze^{iAt_k}]$$

Estimating General Matrix Functions

Goal: Estimate physical observables of the form:

$$\mathrm{Tr}[f(A)\rho f(A)^\dagger O] \text{ and } \mathrm{Tr}[f(A)\rho]$$

- Occurs in quantum algorithms (HHL, QPE, etc.).
- Standard Richardson+Trotter methods only apply to $f(A) = e^{-iAt}$ [6]
- Represent $f(A)$ via Fourier series to reduce to exponentials.

The key extension: prove Richardson extrapolation works for:

$$\mathrm{Tr}[e^{iHt_1}\rho e^{-iHt_2}O]$$

As an intermediate step, we develop and prove algorithms:

$$\mathrm{Tr}[Zf(A)] = \sum_{k=1}^m c_k \mathrm{Tr}[Ze^{iAt_k}]$$

We have it when $Z = \rho$, and extend to when $\|Z\|_1$ is bounded.

Richardson Extrapolation for each $\text{Tr}[Ze^{iAt_k}]$

For each t_k , estimate $\text{Tr}[Ze^{iAt_k}]$ via Richardson-extrapolated circuits.

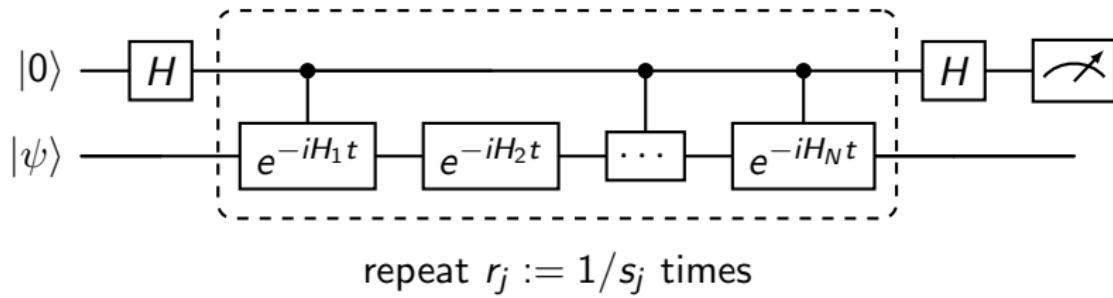
$$\text{Tr}[Ze^{iAt_k}] = \sum_{j=1}^m b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

Richardson Extrapolation for each $\text{Tr}[Ze^{iAt_k}]$

For each t_k , estimate $\text{Tr}[Ze^{iAt_k}]$ via Richardson-extrapolated circuits.

$$\text{Tr}[Ze^{iAt_k}] = \sum_{j=1}^m b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

Each $\text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$ is estimated by sampling from Hadamard circuits like the one below:



Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

- ② Sample pair (k, j) with probability $\frac{|c_k b_j|}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k,j} |c_k b_j|$

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

- ② Sample pair (k, j) with probability $\frac{|c_k b_j|}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k,j} |c_k b_j|$
- ③ Estimate $\text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$ via Hadamard tests

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

- ② Sample pair (k, j) with probability $\frac{|c_k b_j|}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k,j} |c_k b_j|$
- ③ Estimate $\text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$ via Hadamard tests
- ④ Return scaled, signed estimator based on samples

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

- ② Sample pair (k, j) with probability $\frac{|c_k b_j|}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k,j} |c_k b_j|$
- ③ Estimate $\text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$ via Hadamard tests
- ④ Return scaled, signed estimator based on samples

Gate complexity (per sample) $\mathcal{O}\left(\Gamma \log(c/\varepsilon) \cdot (a_{\max} \Upsilon \lambda_{\text{comm}} t_{\max})^{1+\frac{1}{p}}\right)$,

Algorithm for Estimating $\text{Tr}[Zf(A)]$

Algorithm:

- ① Express trace as double sum over Fourier and Richardson terms:

$$\text{Tr}[Zf(A)] = \sum_{k=1}^K \sum_{j=1}^m c_k b_j \text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$$

- ② Sample pair (k, j) with probability $\frac{|c_k b_j|}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k,j} |c_k b_j|$
- ③ Estimate $\text{Tr}[Z\mathcal{P}^{1/s_j}(s_j t_k)]$ via Hadamard tests
- ④ Return scaled, signed estimator based on samples

Gate complexity (per sample) $\mathcal{O}\left(\Gamma \log(c/\varepsilon) \cdot (a_{\max} \Upsilon \lambda_{\text{comm}} t_{\max})^{1+\frac{1}{p}}\right)$,

Sample complexity $\mathcal{O}\left(\frac{\|Z\|_1^2 c^2 (\log \log(1/\varepsilon))^2}{\varepsilon^2} \cdot \log\left(\frac{1}{\delta}\right)\right)$

Key Algorithmic Techniques

- ① **Fourier Expansion:** to represent $\text{Tr}[Zf(A)]$ term as a sum of $\text{Tr}[Ze^{iHT}]$ terms.

Key Algorithmic Techniques

- ① **Fourier Expansion:** to represent $\text{Tr}[Zf(A)]$ term as a sum of $\text{Tr}[Ze^{iHT}]$ terms.
- ② **Error Series Representation:**

$$\text{Tr} \left[Z \mathcal{P}^{1/s}(sT) \right] = \text{Tr} \left[Z e^{iAT} \right] + \sum_{j \in \sigma \mathbb{Z}_+ \geq p} s^j \text{Tr}[Z \tilde{E}_{j+1, K}(T)] + \text{Tr}[Z \tilde{F}_K(T, s)]$$

allows to use and analyze Richardson extrapolation (to get coefficients $\{b_j\}_{j=1}^m$ and schedule $\{s_j\}_{j=1}^m$) for improved gate complexity.

Key Algorithmic Techniques

- ① **Fourier Expansion:** to represent $\text{Tr}[Zf(A)]$ term as a sum of $\text{Tr}[Ze^{iHT}]$ terms.
- ② **Error Series Representation:**

$$\text{Tr} \left[Z \mathcal{P}^{1/s}(sT) \right] = \text{Tr} \left[Z e^{iAT} \right] + \sum_{j \in \sigma \mathbb{Z}_+ \geq p} s^j \text{Tr}[Z \tilde{E}_{j+1,K}(T)] + \text{Tr}[Z \tilde{F}_K(T, s)]$$

allows to use and analyze Richardson extrapolation (to get coefficients $\{b_j\}_{j=1}^m$ and schedule $\{s_j\}_{j=1}^m$) for improved gate complexity.

- ③ **Randomization:** improves sample overhead for circuits

Applications

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

① **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

① **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

② **Ground Energy Estimation:** By examining the behavior of $\tilde{C}(x \pm u)$, we can identify a value x^* that approximates the ground energy E_0 .

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

- ➊ **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

- ➋ **Ground Energy Estimation:** By examining the behavior of $\tilde{C}(x \pm u)$, we can identify a value x^* that approximates the ground energy E_0 .
- ➌ **Binary Search:** A binary search is used to efficiently find E_0 , requiring $\mathcal{O}(\log(1/u))$ evaluations of $\tilde{C}(x)$.

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

① **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

- ② **Ground Energy Estimation:** By examining the behavior of $\tilde{C}(x \pm u)$, we can identify a value x^* that approximates the ground energy E_0 .
- ③ **Binary Search:** A binary search is used to efficiently find E_0 , requiring $\mathcal{O}(\log(1/u))$ evaluations of $\tilde{C}(x)$.

Resource Requirements: To estimate E_0 to precision ε :

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

- ① **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

- ② **Ground Energy Estimation:** By examining the behavior of $\tilde{C}(x \pm u)$, we can identify a value x^* that approximates the ground energy E_0 .
- ③ **Binary Search:** A binary search is used to efficiently find E_0 , requiring $\mathcal{O}(\log(1/u))$ evaluations of $\tilde{C}(x)$.

Resource Requirements: To estimate E_0 to precision ε :

- **Gate Cost:** $C_{\text{gate}} = \tilde{\mathcal{O}}\left(\Gamma\left(\frac{\gamma\lambda_{\text{comm}}}{\varepsilon}\right)^{1+\frac{1}{p}}\right)$

Ground Energy Estimation via QPE ($f(A) = \Theta_x(A)$)

Goal: Estimate the ground energy E_0 of a Hamiltonian H .

- ① **Approximate CDF:** Construct the approximate CDF:

$$\tilde{C}(x) = \text{Tr}[\rho \tilde{\Theta}(xI - \kappa H)]$$

where $\tilde{\Theta}$ is a quantum filter approximating the Heaviside function.

- ② **Ground Energy Estimation:** By examining the behavior of $\tilde{C}(x \pm u)$, we can identify a value x^* that approximates the ground energy E_0 .
- ③ **Binary Search:** A binary search is used to efficiently find E_0 , requiring $\mathcal{O}(\log(1/u))$ evaluations of $\tilde{C}(x)$.

Resource Requirements: To estimate E_0 to precision ε :

- **Gate Cost:** $C_{\text{gate}} = \tilde{\mathcal{O}}\left(\Gamma\left(\frac{\gamma\lambda_{\text{comm}}}{\varepsilon}\right)^{1+\frac{1}{p}}\right)$
- **Sample Cost:** $C_{\text{sample}} = \tilde{\mathcal{O}}\left(\frac{1}{\eta^2}\right)$

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Method:

- We estimate the **resolvent operator**:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1}$$

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Method:

- We estimate the **resolvent operator**:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1}$$

- A positive **broadening factor** ($\Gamma_{\text{broad}} > 0$) is included to ensure the calculation converges.

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Method:

- We estimate the **resolvent operator**:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1}$$

- A positive **broadening factor** ($\Gamma_{\text{broad}} > 0$) is included to ensure the calculation converges.

Resource Requirements: Compute the Green's function to precision ε :

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Method:

- We estimate the **resolvent operator**:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1}$$

- A positive **broadening factor** ($\Gamma_{\text{broad}} > 0$) is included to ensure the calculation converges.

Resource Requirements: Compute the Green's function to precision ε :

- **Gate Cost:** $C_{\text{gate}} = \tilde{\mathcal{O}} \left(\Gamma \left(a_{\max} \Upsilon \lambda_{\text{comm}} \frac{1}{\Gamma_{\text{broad}}} \right)^{1+\frac{1}{p}} \right)$

Estimating Green's Function ($f(A) = A^{-1}$)

Goal: Compute the Green's function, which describes how a quantum system responds to perturbations. This is crucial for calculating spectral properties like excitation energies.

Method:

- We estimate the **resolvent operator**:

$$R(\omega + i\Gamma_{\text{broad}}, \hat{H}) = (\omega + i\Gamma_{\text{broad}} - \hat{H})^{-1}$$

- A positive **broadening factor** ($\Gamma_{\text{broad}} > 0$) is included to ensure the calculation converges.

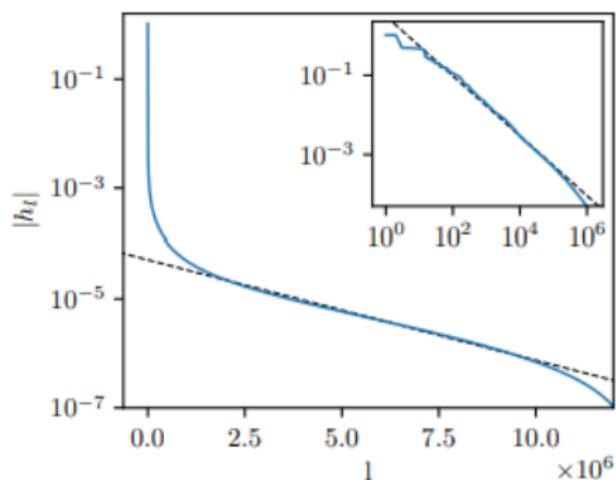
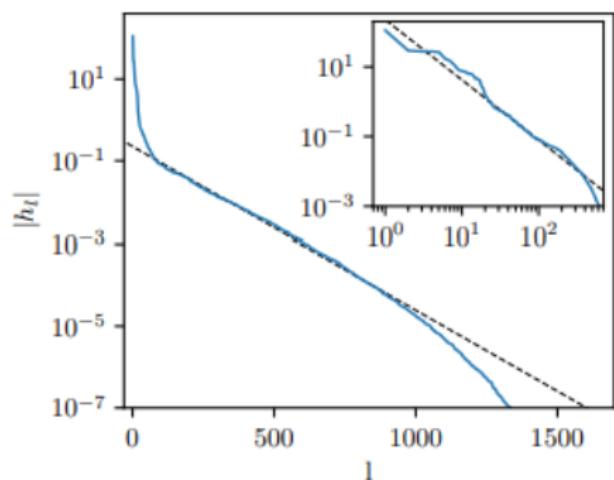
Resource Requirements: Compute the Green's function to precision ε :

- **Gate Cost:** $C_{\text{gate}} = \tilde{\mathcal{O}} \left(\Gamma \left(a_{\max} \Upsilon \lambda_{\text{comm}} \frac{1}{\Gamma_{\text{broad}}} \right)^{1+\frac{1}{p}} \right)$
- **Sample Cost:** $C_{\text{sample}} = \tilde{\mathcal{O}} \left(\frac{1}{\Gamma_{\text{broad}}^2 \varepsilon^2} \right)$

Refinements

Partial Randomization Motivation

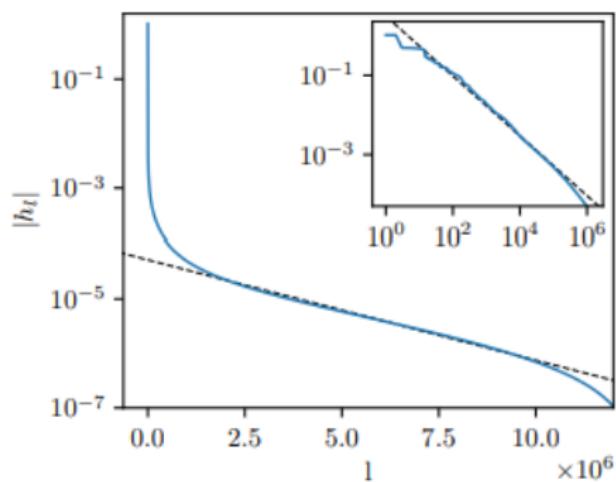
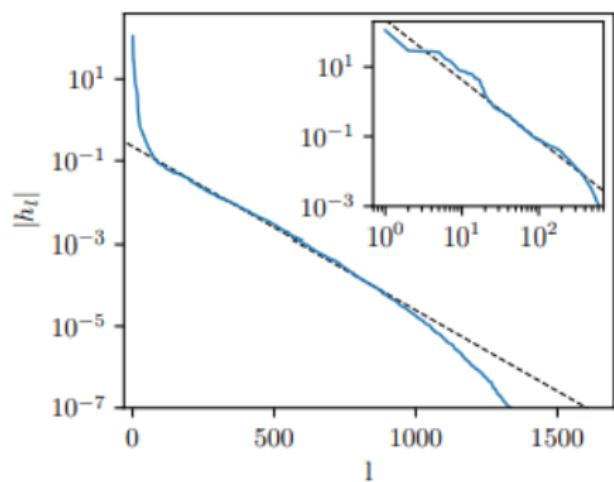
Many Hamiltonians have relatively few high-weight terms. ¹



¹Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [7]

Partial Randomization Motivation

Many Hamiltonians have relatively few high-weight terms. ¹

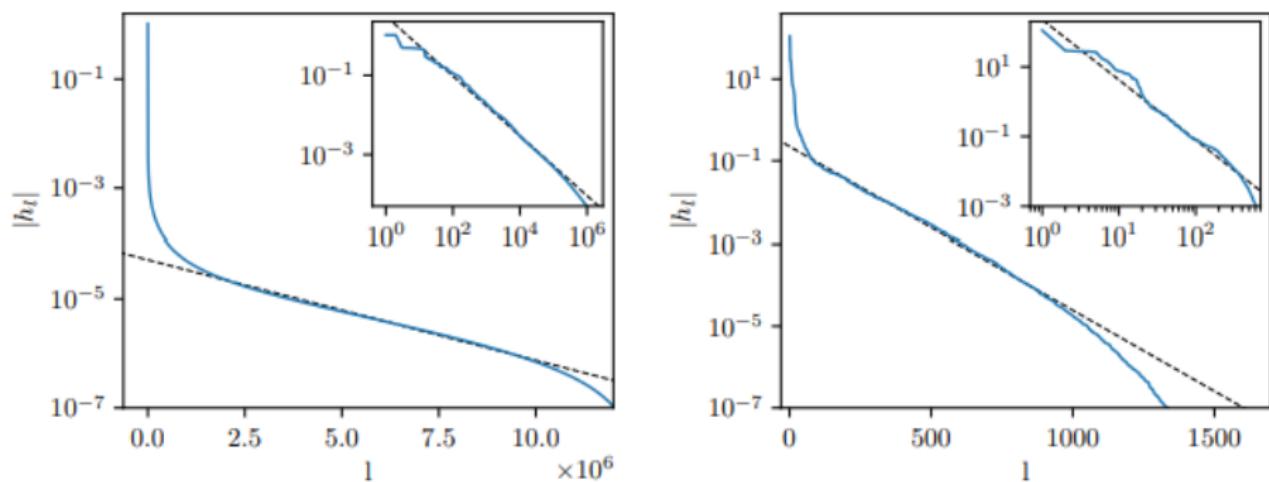


- The main plot shows exponential fit to the tail. ($|h_l| \approx Ae^{-b\ell}$)

¹Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [7]

Partial Randomization Motivation

Many Hamiltonians have relatively few high-weight terms. ¹

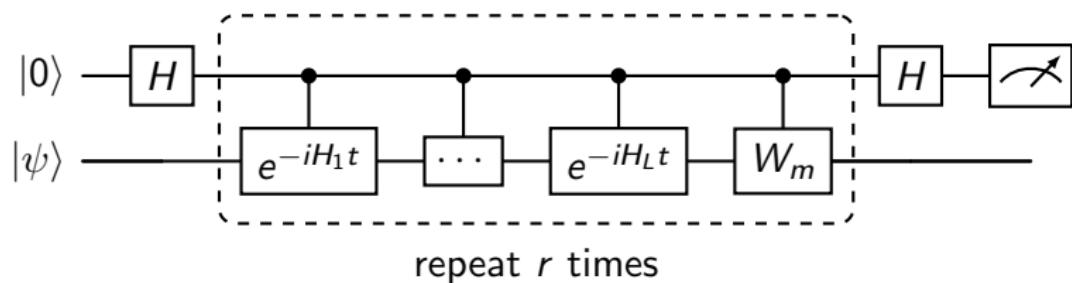


- The main plot shows exponential fit to the tail. ($|h_\ell| \approx Ae^{-b\ell}$)
- The insert shows power law fit for the large terms. ($|h_\ell| \approx C \cdot \ell^{-\alpha}$)

¹Image from J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow [7]

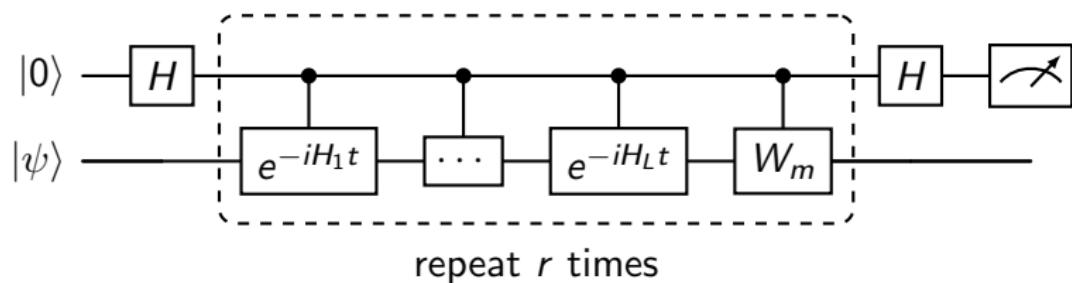
Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:



Richardson Extrapolation on Partial Randomization

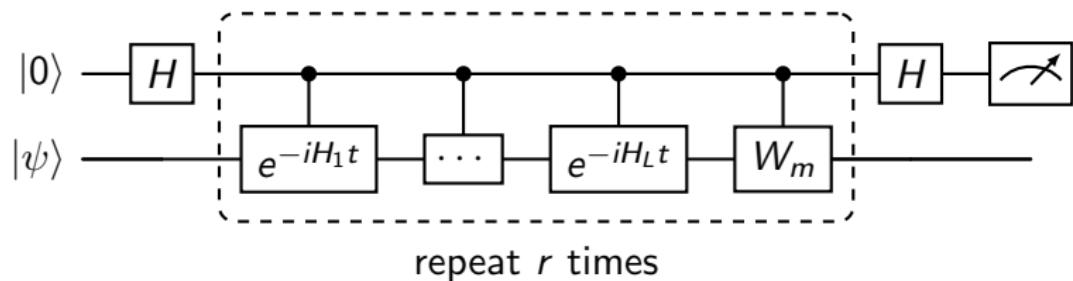
We apply product formulas on L high weight terms and randomize the rest:



To implement each W_m we use the Randomized Taylor Expansion [2].

Richardson Extrapolation on Partial Randomization

We apply product formulas on L high weight terms and randomize the rest:



To implement each W_m we use the Randomized Taylor Expansion [2].
We apply Richardson-extrapolation on the partially random circuits for:

$$C_{\text{gate}} = \mathcal{O} \left(L_D (\Upsilon \lambda_{\text{comm}} T)^{1+\frac{1}{p}} \log^2 \left(\frac{1}{\varepsilon} \right) + \lambda_R^2 T^2 \right)$$

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^2 \right)$$

Fermion Systems

For systems in an η -fermion subspace, we tighten analysis with the **fermionic semi-norm**.

Fermion Systems

For systems in an η -fermion subspace, we tighten analysis with the **fermionic semi-norm**.

- Operators are **number-preserving** (map η -electron states to η -electron states).

Fermion Systems

For systems in an η -fermion subspace, we tighten analysis with the **fermionic semi-norm**.

- Operators are **number-preserving** (map η -electron states to η -electron states).
- Gate complexity now dependent on the fermionic semi-norms of nested commutators.

Fermion Systems

For systems in an η -fermion subspace, we tighten analysis with the **fermionic semi-norm**.

- Operators are **number-preserving** (map η -electron states to η -electron states).
- Gate complexity now dependent on the fermionic semi-norms of nested commutators.
- Same bounds but with $\lambda_{\text{comm}}^{(\eta)}$ defined from $\alpha_{\text{comm}}^{(\eta)} < \alpha_{\text{comm}}$ [8]–[10] which are generally tighter than standard commutator bounds.

Next Steps:

- **1D extrapolation:** Note that the sample complexity

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \right)$$

Can we improve the $(\log \log(\frac{1}{\varepsilon}))^4$ to $(\log \log(\frac{1}{\varepsilon}))^2$ by extrapolating directly over $\text{Tr}[e^{iHT} \rho e^{-iHT'} O]$ instead of $\text{Tr}[Ze^{iHT}]$?

Next Steps:

- **1D extrapolation:** Note that the sample complexity

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \right)$$

Can we improve the $(\log \log(\frac{1}{\varepsilon}))^4$ to $(\log \log(\frac{1}{\varepsilon}))^2$ by extrapolating directly over $\text{Tr}[e^{iHT} \rho e^{-iHT'} O]$ instead of $\text{Tr}[Ze^{iHT}]$?

- **Resource estimation:** Can we do resource estimates for a for more chemical systems (Systems in the Low-Energy Subspace)?

Next Steps:

- **1D extrapolation:** Note that the sample complexity

$$C_{\text{sample}} = \mathcal{O} \left(\frac{1}{\varepsilon^2} \left(\log \log \left(\frac{1}{\varepsilon} \right) \right)^4 \right)$$

Can we improve the $(\log \log(\frac{1}{\varepsilon}))^4$ to $(\log \log(\frac{1}{\varepsilon}))^2$ by extrapolating directly over $\text{Tr}[e^{iHT} \rho e^{-iHT'} O]$ instead of $\text{Tr}[Ze^{iHT}]$?

- **Resource estimation:** Can we do resource estimates for a for more chemical systems (Systems in the Low-Energy Subspace)?
- **Analyzing constant factors** in the asymptotics for more specific performance estimates.

Acknowledgments

Samson Wang

Thanks also to the rest of the Preskill Group, IQIM, and SFP for giving me such an enriching summer research experience.

John Preskill

Feedback:

**PLEASE LEAVE YOUR
AUDIENCE FEEDBACK HERE**

References I

- [1] L. Lin and Y. Tong, "Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers," *PRX Quantum*, vol. 3, no. 1, Feb. 2022, ISSN: 2691-3399. DOI: 10.1103/prxquantum.3.010318. [Online]. Available: <http://dx.doi.org/10.1103/PRXQuantum.3.010318>.
- [2] K. Wan, M. Berta, and E. T. Campbell, "Randomized quantum algorithm for statistical phase estimation," , vol. 129, p. 030503, 3 Jul. 2022, 2110.12071. DOI: 10.1103/PhysRevLett.129.030503. [Online]. Available: <https://link.aps.org/doi/10.1103/PhysRevLett.129.030503>.
- [3] S. Wang, S. McArdle, and M. Berta, "Qubit-efficient randomized quantum algorithms for linear algebra," *PRX Quantum*, vol. 5, no. 2, Apr. 2024, ISSN: 2691-3399. DOI: 10.1103/prxquantum.5.020324. [Online]. Available: <http://dx.doi.org/10.1103/PRXQuantum.5.020324>.

References II

- [4] G. H. Low and I. L. Chuang, "Hamiltonian simulation by qubitization," *Quantum*, vol. 3, p. 163, 2019, arXiv:1610.06546. DOI: 10.22331/q-2019-07-12-163.
- [5] A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, "Theory of trotter error with commutator scaling," *Physical Review X*, vol. 11, no. 1, p. 011020, Feb. 2021. DOI: 10.1103/PhysRevX.11.011020. [Online]. Available: <http://dx.doi.org/10.1103/PhysRevX.11.011020>.
- [6] J. D. Watson and J. Watkins, *Exponentially reduced circuit depths using trotter error mitigation*, 2024. DOI: 10.48550/ARXIV.2408.14385. arXiv: 2408.14385. [Online]. Available: <https://arxiv.org/abs/2408.14385>.
- [7] J. Günther, F. Witteveen, A. Schmidhuber, M. Miller, M. Christandl, and A. Harrow, "Phase estimation with partially randomized time evolution," 2503.05647, 2025.

References III

- [8] S. McArdle, E. Campbell, and Y. Su, "Exploiting fermion number in factorized decompositions of the electronic structure hamiltonian," *Physical Review A*, vol. 105, no. 1, Jan. 2022, ISSN: 2469-9934. DOI: 10.1103/physreva.105.012403. [Online]. Available: <http://dx.doi.org/10.1103/PhysRevA.105.012403>.
- [9] Y. Su, H. Y. Huang, and E. T. Campbell, "Nearly tight Trotterization of interacting electrons," , vol. 5, no. 1, pp. 1–58, 2021, 2012.09194, ISSN: 2521327X. DOI: 10.22331/Q-2021-07-05-495. arXiv: 2012.09194.
- [10] G. H. Low, Y. Su, Y. Tong, and M. C. Tran, "Complexity of implementing trotter steps," *PRX Quantum*, vol. 4, no. 2, May 2023, ISSN: 2691-3399. DOI: 10.1103/prxquantum.4.020323. [Online]. Available: <http://dx.doi.org/10.1103/PRXQuantum.4.020323>.