Project Requirements Document

Born Rule Breakers:
Steve Cao, Haadi Khan, Rhik Mazumder, Alice Wang

January 2026

1 Technical Roles

Our technical roles were assigned as follows:
e Rhik: Project Lead,
Haadi: GPU Acceleration PIC,

Steve: Quality Assurance PIC,
Alice: Technical Marketing PIC.

2 Technical Approach

2.1 Verification Strategy

The LABS problem, which in the quantum context corresponds to minimizing
an Ising Hamiltonian, is equivalent classically to maximizing the merit factor
(MF):
N? N2
MF == 7]\[_1 = —_——
2y G 2F

A list of known solutions to LABS up to N < 82, alongside their corresponding
Ising Hamiltonian values and merit factors, can be found in [1, 3]. We can simply
check our results against these sequences in unit tests to perform verification.

2.2 Hybrid Algorithm Design

We adopt the Pauli Correlation Encoding (PCE) as our quantum primitive
to replace the counterdiabatic approach. This choice is motivated by a combi-
nation of empirical performance metrics and practical scalability considerations
[5].

First, PCE demonstrates significantly better runtime scaling compared
to QAOA and classical heuristics for combinatorial optimization. For example,
for problems with even N:

Method Runtime Scaling (Even N) Runtime Scaling (Odd N)

QAOA [2] O(1.46™) O(1.46")
PCE [5] 0(1.330V) 0(1.325)
Memetic Tabu Search [7] 0(1.358") O(1.409%)

This is a roughly 9-10% improvement in the exponential base and compounds
for large IV, translating to an approximately 4x speedup at N = 100. PCE also
shows a clear advantage for near-optimal or approximate solutions, which are
often sufficient in real-world settings [7].

Furthermore, PCE compresses problem instances into a polynomial num-
ber of qubits (i.e. N = poly(n), where n is the number of qubits). For ex-
ample, it has been shown that N = 45 requires only 4 qubits, N = 66 requires
8, N = 120 requires 10, and so on with just 20 qubits required for N > 200.
This represents an 11-30x reduction in qubit requirements relative to standard
encodings, enabling tractable experiments on current quantum hardware [5].

Finally, PCE circuits are shallow, with depth scaling as O(\/]V), signifi-
cantly lower than O(N) in standard approaches. The shallowness of these cir-
cuits, together with the reduced qubit count, help suppress barren plateaus
in training by keeping gradients appreciable. For example, an instance with
N = 45 requires only 30 two-qubit gates, 15 layers, and ~ 150 parameters,
allowing effective optimization of the circuit on near-term devices [5].

The combination of extreme qubit efficiency and shallow circuits makes PCE
immediately deployable on NISQ devices. For instance, on IonQ Forte, instances
with NV = 120 were solved using only 10 qubits, ~ 3000 shots, and a bitstring
error rate of 1.6% [5]. This resource-efficient structure ensures both scalability
to larger problem sizes and compatibility with current quantum hardware, en-
abling exploration of combinatorial optimization problems beyond the reach of
standard variational approaches.

2.3 GPU Acceleration
Stage 1: GPU-Accelerated PCE using CUDA-Q

We employ CUDA-Q’s nvidia or nvidia-mgpu backend to perform state vector
simulation entirely on the GPU. The PCE quantum circuit—a hardware-efficient
brickwork ansatz with 10 layers of single-qubit rotations (R, R,, R.) and
CNOT gates—executes natively on GPU, avoiding costly CPU-GPU memory
transfers.

For gradient estimation, we parallelize the parameter-shift rule: each of the
~ 150 circuit parameters requires two forward passes (parameter 47 /2 shift),
and CUDA-Q can batch these evaluations across GPU cores or distribute them
across multiple GPUs when using the multi-GPU target. Expectation values
for all N Pauli operators in our IIVC) set are computed simultaneously using
CUDA-Q’s batched observable evaluation, which internally parallelizes across the
Pauli set.

We run multiple independent PCE optimizations (10-20 runs with different
random initializations) in parallel across available GPU resources to explore
the loss landscape, selecting the best solution as our warm start. This GPU-
native approach accelerates PCE training by approximately 50-100x compared
to CPU-based simulation for problems in the N = 20-50 range.

Stage 2: GPU-Accelerated Memetic Tabu Search using CuPy

Once we obtain the PCE seed, we transition to classical refinement using CuPy
(NVIDIA’s GPU-accelerated NumPy) for all population-based operations. The
population of 50 binary sequences is stored in GPU memory as a (50, N) CuPy
array throughout the entire MTS execution, eliminating CPU-GPU transfer
overhead.

The critical computational bottleneck—energy evaluation—is fully vector-
ized: we compute LABS autocorrelation energies for all population members
simultaneously using CuPy’s parallel reduction operations. For each individual’s
tabu search step, we generate all N single-bit-flip neighbors on GPU (creating
an (N, N) array via cp.tile and diagonal masking), then evaluate all N ener-
gies in a single batched kernel call. This leverages GPU parallelism to explore
the entire 1-flip neighborhood simultaneously rather than sequentially.

Genetic operations (crossover, mutation) are implemented as vectorized CuPy
operations on GPU arrays. For maximum performance on critical loops, we op-
tionally deploy custom CUDA kernels written with CuPy’s RawKernel interface
for autocorrelation calculation, which can provide an additional 2-5x speedup
over pure CuPy by optimizing memory access patterns and using shared memory.
The entire MTS population never leaves GPU memory until final convergence,
enabling our implementation to process 1000+ MTS generations in minutes
rather than hours.

3 Execution Tactics

3.1 Agentic Workflow

We used numerous Al agents all via Claude Opus 4.5. Our first agent (Alan) was
tasked with creating custom a Model Context Protocol (MCP) server. First,
Alan web crawled the CUDA-Q documentation. Then he semantically chunked
and embedded the text using OpenAl’s embedding-3-small-model, putting
these into our ChromaDB vector database. We then built MCP tools to query
the database effectively and accurately.

Following that, our agentic workflow consisted of a lead agent (Kole) or-
chestrating a team of subagents. Kole was given access to any files involved in
our research plan, including the provided Jupyter Notebooks as well as any pa-
pers we wanted to reference (both for verification and for developing a quantum
algorithm).

Our first subagent (Isabella) was tasked with creating the initial implementa-
tion based on [6] as context. Our second subagent (Tanish) worked in tandem,

receiving that paper in addition to our verification sources [1, 3] in order to
serve the purpose of LLM as a judge. Our third subagent (Ethan) was tasked
with performing hardware optimization, including the GPU acceleration tasks
discussed in subsection 2.3.

3.2 Success Metrics

To assess the success of our original hybrid algorithm, we plan to measure
and plot the maximum merit factor of our algorithm after exactly 200000 loss
function calls for select values of N. We believe this is a good quantification of
our program’s solution quality relative to its time efficiency. Furthermore, this
metric also avoids the risk of having a single program execute for many hours
in our data-taking process, as in measuring time-to-solution (TTS) through
number of loss function calls directly. This was a special source for concern
because PCE-based variational algorithms have no performance guarantees [4].

3.3 Resource Management and GPU Selection
We adopt a tiered GPU strategy to optimize our $20 Brev credit allocation:

e Development and testing: We will use L4 instances ($1.00/hour) for
small PCE instances (N < 30) to validate correctness, tune hyperparam-
eters, and perform initial benchmarks. These local benchmarks provide
a preliminary estimate of the crossover point between the quantum PCE
algorithm and the classical MTS algorithm.

e Production runs: We will switch to A100 instances ($2.00/hour) for
target instances (N = 35-45) where the 40GB memory and higher com-
pute capability justify the cost. Thus PCE experiments are concentrated
around the predicted crossover point to maximize efficiency and minimize
wasted credits.

e Session management: We will implement aggressive orchestration with
automated 30-minute idle checks and immediate instance termination after
runs complete. This timer-based monitoring prevents ”zombie instances,”
and a shared team log tracks all active GPU sessions, updated every 30
minutes.

Budget allocation reserves $5 for L4 development (5 hours), $12 for A100
production benchmarking (6 hours), leaving a $3 buffer for debugging. By
testing code locally and concentrating full-scale benchmarking toward the end,
we avoid credit depletion, reduce idle time, and ensure that machines are used
efficiently. To prevent credit depletion, we enforce the following protocols:

e Pre-GPU testing: We will validate all code locally on CPU simulations
(N < 10) before any GPU instance is launched.

e Zombie prevention: The GPU Acceleration PIC maintains a shared
team log tracking all active instances. We will set 30-minute phone alarms
and confirm instance status in the log. Instances are terminated immedi-
ately after job completion using automated shutdown scripts.

e Session coordination: Only one team member will launch GPU in-
stances at a time.

e Iterative benchmarking: We will test hyperparameters on L4 instances
before committing to full-scale A100 runs, concentrating expensive exper-
iments near the end of the hackathon when our strategy is validated.

References

1]

2]

J. Bernasconi et al. Low-autocorrelation binary sequences: exact results and
bounds, 2015.

M. Harrigan et al. Evidence for scaling advantage of the quantum approxi-
mate optimization algorithm, 2023.

A. N. Leukhin and E. N. Potekhin. A bernasconi model for constructing
ground-state spin systems and optimal binary sequences. Journal of Physics:
Conference Series, 613(1):012006, 2015.

Camilo G. Maciel T. O. Canabarro A. Borges L. Aolita L. Sciorilli, M. A
competitive nisq and qubit-efficient solver for the labs problem, 2026.

M. Sciorilli, G. Camilo, T. O. Maciel, A. Canabarro, L. Borges, and L. Aolita.
Quantum correlation encoding for combinatorial optimization, 2026.

M. Sciorilli et al. Perturbative correlation encoding for optimization prob-
lems, 2024. Version 2.

J. Smith et al. Scaling advantage with quantum-enhanced memetic tabu
search for low autocorrelation binary sequences, 2025. NVIDIA.

