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1 Background and Motivation

Probabilistic graphical models (PGMs) are a cornerstone of modern machine learning, providing a unifying
framework for expressing conditional dependencies among variables. Markov Random Fields (MRFs), in
particular, define energy-based distributions of the form

Py(x) = ZEH) exp(Z Oc <Z>c(90c)> ,

cec

where C denotes the set of maximal cliques in the graph and ¢¢(z¢) encodes local potentials. MRFs power
applications ranging from image reconstruction and protein folding to generative models such as Boltzmann
machines. However, inference and sampling in MRFs remain NP-hard in general, as the partition function
Z(#) and the associated marginals scale exponentially with the number of variables. Classical approximate
methods such as Markov Chain Monte Carlo (MCMC), Gibbs sampling, or perturb-and-MAP (PAM) often
suffer from slow mixing, parameter sensitivity, or biased samples.

Recent progress in quantum information science offers new tools for probabilistic inference. Because the
amplitudes of an n-qubit state intrinsically represent a 2"-dimensional probability distribution, quantum
computers can, in principle, perform exponentially large linear-algebraic transformations in parallel in a
single shot without costly burn-in times. Unfortunately most existing quantum approaches to probabilistic
modeling like quantum Boltzmann machines [2], quantum Bayesian networks [3], or annealing-based Gibbs
samplers [4] either require fully fault-tolerant hardware or rely on variational training heuristics that lack
theoretical guarantees.

Piatkowski and Zoufal (2022) bridged this gap by introducing Quantum Circuits for Graphical Models
(QCGM), the first exact quantum sampling algorithm for discrete factor models [7]. QCGM constructs a
unitary embedding of the MRF Hamiltonian

Hy = —Z Z 0oy ®cy,

CeCyeXc

where each sufficient statistic ¢, is encoded as a product of Pauli-Z projectors following a “Pauli-Markov”
construction. The resulting circuit Cy generates unbiased and independent samples whose distribution
matches Py(x). Remarkably, QCGM satisfies a unitary Hammersley-Clifford theorem: the circuit factorizes
over the cliques of the underlying graph, mirroring the structure of classical MRFs. Experimental validation
on IBM Falcon processors confirmed the method’s correctness and demonstrated parameter learning via
hybrid optimization.

Despite these advances, QCGM faces three major limitations for early fault-tolerant (EFT) quantum devices:

(i) Ancilla overhead: the construction requires 1 + |C| auxiliary qubits, one per clique, for real-part
extraction, which restricts scalability beyond small graphs.



(ii) Exponential success decay: the probability of obtaining a valid sample, d. = [[.. 0c, decreases
exponentially with the number of cliques.

(iii) Circuit depth: the embeddings Uc,,(0c,,) entail sequential real-part extractions; implementing these
naively exceeds EFT coherence times.

This proposal aims to extend QCGM toward a resource-efficient, hybrid framework suitable for EFT plat-
forms (50-200 logical qubits, low-depth gates, minimal error-correction). The goal is to preserve the
model’s exact representational fidelity while reducing ancilla use and runtime via classical post-processing
and adaptive control.

2 Research Objectives and Methodology

This project aims to design low-ancilla, shallow-depth quantum circuits that can faithfully model and sample
from Markov Random Fields (MRFs) while leveraging hybrid classical post-processing to handle stochastic
failures. The research addresses three central goals: (i) reducing ancilla requirements through circuit com-
pression, (ii) improving sampling efficiency via hybrid quantum-classical correction, and (iii) approximating
exponential maps through variational compression.

Circuit Compression and Representation

Following QCGM, each binary variable z,, corresponds to one qubit. To avoid the 1+|C| ancilla overhead re-
quired for real-part extraction, the proposed design employs a shared ancilla line with dynamic measurement
and reset. After processing clique C;, the ancilla is measured and, if successful (|0)), reused for subsequent
cliques. This “repeat-until-success” strategy maintains unbiased sampling while reducing ancilla scaling
from O(|C]) to O(1) [8,1].

Each clique-factor operation will be implemented through a controlled rotation
Ucy(Ocy) = elfovtey,

where Pc, is a sparse tensor product of Pauli-Z operators. Commuting factors on disjoint cliques can
be parallelized, yielding total circuit depth O(x(G)), where x(G) is the graph’s chromatic number. This
provides an architecture compatible with early fault-tolerant (EFT) devices having tens to hundreds of qubits.

Hybrid Sampling and Post-Processing

Because QCGM'’s success probability d, decreases exponentially with the number of cliques, naive repeti-
tion quickly becomes inefficient. To address this, we employ hybrid post-processing techniques that extract
unbiased statistics from imperfect samples:

* Conditional Rejection Sampling: retain both successful and failed outcomes, reweighting them accord-
ing to estimated success probabilities.

Additionally, error mitigation strategies such as zero-noise extrapolation and readout correction [5, 10, [11]
help stabilize the estimates without requiring full fault-tolerant operation.



Variational Compression of Exponential Maps

The exact operator exp(— Hy) induces large Trotter depths. We will replace it with a parameterized quantum
circuit V'(vy) of fixed depth L, trained to match low-order marginals of Py. The loss

L) =Y Kbcwhve — (bey)pll?
(

C.y)

optimizes local correlation fidelity rather than global partition functions, allowing shallow, noise-resilient
approximations. This forms a compressed, variational analogue of QCGM suited to EFT coherence times.

3 Expected Results and Scientific Impact

The project is expected to produce:

R1. Low-Ancilla Circuit Designs: Efficient QCGM-style encodings using O(n + 1) qubits via ancilla reuse
and local factor parallelization.

R2. Hybrid Inference Methods: Classical correction schemes transforming imperfect quantum samples
into unbiased estimators.

R3. Variationally Compressed Models: Fixed-depth PQCs preserving key statistical moments while achiev-
ing exponential depth reduction.

R4. Quantitative Benchmarks: Systematic comparisons between hybrid quantum-classical inference and
classical MCMC baselines.

By demonstrating scalable, interpretable quantum modeling of MRFs, this work advances the integration of
quantum computing with probabilistic machine learning.

4 Current Progress and Next Steps

Our current work has focused on implementing the modeling and sampling framework of Piatkowski and
Zoufal [7], reproducing their Quantum Circuits for Graphical Models (QCGM) as a foundation for this
project. We have verified that the circuit correctly represents discrete Markov Random Fields via a unitary
embedding of the energy function, establishing a baseline for investigating extensions that improve resource
efficiency on early fault-tolerant devices. This implementation confirms that QCGM can generate correct
samples on small instances and provides the platform for testing new ancilla-reduction and hybrid sampling
methods.

The next phase will extend this baseline to more resource-efficient designs. We plan to implement shared-
ancilla architectures with mid-circuit measurement and reset to sequentially reuse qubits, and to develop
hybrid post-processing schemes that combine quantum sampling with classical reweighting to counteract
the exponential decay in success probability d,. A further direction will explore variational compression
of exp(—Hy) using parameterized quantum circuits trained to reproduce low-order marginals, targeting
shallow-depth, noise-tolerant approximations. Together, these steps will transition our current QCGM repli-
cation into a scalable, resource-aware framework for probabilistic inference on early fault-tolerant quantum
hardware.
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